Get access

Modeling Interactions between an Amino Acid and a Metal Dication: Cysteine–Calcium(II) Reactions in the Gas Phase

Authors

  • Dr. Marcela Hurtado,

    1. Departamento de Química, C-9, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)
    Search for more papers by this author
  • Manuel Monte,

    1. Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, Campus de Cantoblanco, 28049 Madrid (Spain)
    Search for more papers by this author
  • Dr. Al Mokhtar Lamsabhi,

    Corresponding author
    1. Departamento de Química, C-9, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)
    • Departamento de Química, C-9, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)
    Search for more papers by this author
  • Prof. Dr. Manuel Yáñez,

    1. Departamento de Química, C-9, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)
    Search for more papers by this author
  • Prof. Dr. Otilia Mó,

    1. Departamento de Química, C-9, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)
    Search for more papers by this author
  • Dr. Jean-Yves Salpin

    Corresponding author
    1. Université d'Evry Val d'Essonne, Laboratoire Analyse et Environnement pour la Biologie et l'Environnement, Bâtiment Maupertuis, Boulevard François Mitterrand, 91025 Evry Cedex (France)
    • Université d'Evry Val d'Essonne, Laboratoire Analyse et Environnement pour la Biologie et l'Environnement, Bâtiment Maupertuis, Boulevard François Mitterrand, 91025 Evry Cedex (France)
    Search for more papers by this author

Abstract

The gas-phase interactions between Ca2+ and cysteine (Cys) have been investigated through the use of electrospray ionization/mass spectrometry techniques and B3LYP/6-311++G(3df,2p)//B3LYP/6-311+G(d,p) density functional theory computations. The unimolecular collision-activated decomposition of [Ca(Cys)]2+ is dominated by the loss of ammonia, a Coulomb explosion yielding NH4+ and [CaC3H3O2S]+, and the loss of H2S. The detection of lighter [C3H3OS]+ monocations indicates that the [CaC3H4O2S]2+ doubly charged species produced by the loss of ammonia undergo a subsequent Coulomb explosion yielding [C3H3OS]++CaOH+. This [C3H3OS]+ cation finally decomposes into [C2H3S]++CO. Alternatively, the aforementioned [CaC3H4O2S]2+ dications may also lead to lighter [CaCO2]2+ and [CaC2H4S]2+ dications by the loss of C2H4S and CO2, respectively. A detailed theoretical exploration of the Ca2+/Cys potential-energy surface indicates that the salt-bridge structures, in which the metal dication interacts with the carboxylate group of the zwitterionic form of cysteine, are at the origin of the different reaction pathways leading to the observed product ions, even though they lie higher in energy than the charge-solvated adduct in which the metal interacts simultaneously with the carbonyl oxygen, the amino, and the SH group of its canonical form. The interaction between the metal cation and the base is essentially electrostatic, with a calculated binding energy of 560 kJ mol−1.

Ancillary