SEARCH

SEARCH BY CITATION

Keywords:

  • continuity equation;
  • macroscopic modeling;
  • synergetics;
  • case-based modeling;
  • agent-based modeling;
  • complex social systems

Abstract

Recently, the continuity equation (also known as the advection equation) has been used to study stability properties of dynamical systems, where a linear transfer operator approach was used to examine the stability of a nonlinear equation both in continuous and discrete time (Vaidya and Mehta, IEEE Trans Autom Control 2008, 53, 307–323; Rajaram et al., J Math Anal Appl 2010, 368, 144–156). Our study, which conducts a series of simulations on residential patterns, demonstrates that this usage of the continuity equation can advance Haken's synergetic approach to modeling certain types of complex, self-organizing social systems macroscopically. The key to this advancement comes from employing a case-based approach that (1) treats complex systems as a set of cases and (2) treats cases as dynamical vsystems which, at the microscopic level, can be conceptualized as k dimensional row vectors; and, at the macroscopic level, as vectors with magnitude and direction, which can be modeled as population densities. Our case-based employment of the continuity equation has four benefits for agent-based and case-based modeling and, more broadly, the social scientific study of complex systems where transport or spatial mobility issues are of interest: it (1) links microscopic (agent-based) and macroscopic (structural) modeling; (2) transforms the dynamics of highly nonlinear vector fields into the linear motion of densities; (3) allows predictions to be made about future states of a complex system; and (4) mathematically formalizes the structural dynamics of these types of complex social systems.