Ring Opening of Methylcyclohexane over Platinum-Loaded Zeolites

Authors


Abstract

The activity of different platinum-loaded zeolites (Mordenite, ZSM-12, ZSM-5, ZSM-23) was investigated in the hydroconversion of methylcyclohexane (MCH), in the context of upgrading highly aromatic distillates for fuel blending. In all cases, conversion of MCH proceeds according to a pathway where the primary products are a mixture of dimethylcyclopentanes and ethylcyclopentane formed by isomerization and ring contraction of MCH. The primary products undergo consecutive ring-opening reactions with formation of n- and isoheptanes. The latter further react to form lower-molecular-weight n- and isoalkanes. The selectivity and distribution of products deriving from ring-contraction and ring-opening reactions are strongly affected by the pore size and topology of the zeolites. ZSM-5 exhibits a strong reactant shape-selectivity effect on ring-opening products. The evaluated zeolites show the following order of activity in the conversion of methylcyclohexane: Mordenite>ZSM-12>ZSM-5>ZSM-23.

Ancillary