SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Aimaro Sanna, Tushar P. Vispute, George W. Huber, Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts, Applied Catalysis B: Environmental, 2015, 165, 446

    CrossRef

  2. 2
    Jacqueline R. Kean, Andrew E. Graham, Indium(III) triflate promoted synthesis of alkyl levulinates from furyl alcohols and furyl aldehydes, Catalysis Communications, 2015, 59, 175

    CrossRef

  3. 3
    Christina Dorado, Charles A. Mullen, Akwasi A. Boateng, Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling, Applied Catalysis B: Environmental, 2015, 162, 338

    CrossRef

  4. 4
    Sung Won Kim, Prediction of product distribution in fine biomass pyrolysis in fluidized beds based on proximate analysis, Bioresource Technology, 2015, 175, 275

    CrossRef

  5. 5
    Mobolaji B. Shemfe, Sai Gu, Panneerselvam Ranganathan, Techno-economic performance analysis of biofuel production and miniature electric power generation from biomass fast pyrolysis and bio-oil upgrading, Fuel, 2015, 143, 361

    CrossRef

  6. 6
    Shaolong Wan, Yong Wang, A review on ex situ catalytic fast pyrolysis of biomass, Frontiers of Chemical Science and Engineering, 2014, 8, 3, 280

    CrossRef

  7. 7
    Marc A. Dubé, Somaieh Salehpour, Applying the Principles of Green Chemistry to Polymer Production Technology, Macromolecular Reaction Engineering, 2014, 8, 1
  8. 8
    Shin-Kuan Wu, Po-Chen Lai, Yu-Chuan Lin, Atmospheric Hydrodeoxygenation of Guaiacol over Nickel Phosphide Catalysts: Effect of Phosphorus Composition, Catalysis Letters, 2014, 144, 5, 878

    CrossRef

  9. 9
    Ahmad Galadima, Oki Muraza, Biodiesel production from algae by using heterogeneous catalysts: A critical review, Energy, 2014, 78, 72

    CrossRef

  10. 10
    Charles A. Mullen, Akwasi A. Boateng, Robert B. Dadson, Fawzy M. Hashem, Biological Mineral Range Effects on Biomass Conversion to Aromatic Hydrocarbons via Catalytic Fast Pyrolysis over HZSM-5, Energy & Fuels, 2014, 28, 11, 7014

    CrossRef

  11. 11
    Huiyan Zhang, Jianlong Nie, Rui Xiao, Baosheng Jin, Changqing Dong, Guomin Xiao, Catalytic Co-pyrolysis of Biomass and Different Plastics (Polyethylene, Polypropylene, and Polystyrene) To Improve Hydrocarbon Yield in a Fluidized-Bed Reactor, Energy & Fuels, 2014, 28, 3, 1940

    CrossRef

  12. 12
    Shanshan Shao, Huiyan Zhang, Lijun Heng, Mengmeng Luo, Rui Xiao, Dekui Shen, Catalytic Conversion of Biomass Derivates over Acid Dealuminated ZSM-5, Industrial & Engineering Chemistry Research, 2014, 53, 41, 15871

    CrossRef

  13. 13
    Jian Li, Xiangyu Li, Guoqiang Zhou, Wei Wang, Chengwen Wang, Sridhar Komarneni, Yujue Wang, Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions, Applied Catalysis A: General, 2014, 470, 115

    CrossRef

  14. 14
    Changjun Liu, Huamin Wang, Ayman M. Karim, Junming Sun, Yong Wang, Catalytic fast pyrolysis of lignocellulosic biomass, Chem. Soc. Rev., 2014, 43, 22, 7594

    CrossRef

  15. 15
    Jungho Jae, Robert Coolman, T.J. Mountziaris, George W. Huber, Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal, Chemical Engineering Science, 2014, 108, 33

    CrossRef

  16. 16
    Güray Yildiz, Tom Lathouwers, Hilal Ezgi Toraman, Kevin M. van Geem, Guy B. Marin, Frederik Ronsse, Ruben van Duren, Sascha R. A. Kersten, Wolter Prins, Catalytic Fast Pyrolysis of Pine Wood: Effect of Successive Catalyst Regeneration, Energy & Fuels, 2014, 28, 7, 4560

    CrossRef

  17. 17
    Salman Raza Naqvi, Yoshimitsu Uemura, Suzana Bt Yusup, Catalytic pyrolysis of paddy husk in a drop type pyrolyzer for bio-oil production: The role of temperature and catalyst, Journal of Analytical and Applied Pyrolysis, 2014, 106, 57

    CrossRef

  18. 18
    Sung Won Kim, Bon Seok Koo, Dong Hyun Lee, Catalytic pyrolysis of palm kernel shell waste in a fluidized bed, Bioresource Technology, 2014, 167, 425

    CrossRef

  19. 19
    Sushil Adhikari, Vaishnavi Srinivasan, Oladiran Fasina, Catalytic Pyrolysis of Raw and Thermally Treated Lignin Using Different Acidic Zeolites, Energy & Fuels, 2014, 28, 7, 4532

    CrossRef

  20. 20
    Yanni Yuan, Peiyan Bi, Minghui Fan, Zhaoxia Zhang, Peiwen Jiang, Quanxin Li, Directional synthesis of liquid higher olefins through catalytic transformation of bio-oil, Journal of Chemical Technology and Biotechnology, 2014, 89, 2
  21. 21
    Xiangyu Li, Jian Li, Guoqiang Zhou, Yu Feng, Yujue Wang, Gang Yu, Shubo Deng, Jun Huang, Bin Wang, Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites, Applied Catalysis A: General, 2014, 481, 173

    CrossRef

  22. 22
    Guanqun Luo, Fernando L.P. Resende, Fast pyrolysis of beetle-killed trees, Journal of Analytical and Applied Pyrolysis, 2014, 110, 100

    CrossRef

  23. 23
    Alex D. Paulsen, Blake R. Hough, C. Luke Williams, Andrew R. Teixeira, Daniel T. Schwartz, Jim Pfaendtner, Paul J. Dauenhauer, Fast Pyrolysis of Wood for Biofuels: Spatiotemporally Resolved Diffuse Reflectance In situ Spectroscopy of Particles, ChemSusChem, 2014, 7, 3
  24. 24
    Christina Dorado, Charles A. Mullen, Akwasi A. Boateng, H-ZSM5 Catalyzed Co-Pyrolysis of Biomass and Plastics, ACS Sustainable Chemistry & Engineering, 2014, 2, 2, 301

    CrossRef

  25. 25
    Kazuhiro Uemura, Srinivas Appari, Shinji Kudo, Jun-ichiro Hayashi, Hisahiro Einaga, Koyo Norinaga, In-situ reforming of the volatiles from fast pyrolysis of ligno-cellulosic biomass over zeolite catalysts for aromatic compound production, Fuel Processing Technology, 2014,

    CrossRef

  26. 26
    Martin Linck, Larry Felix, Terry Marker, Michael Roberts, Integrated biomass hydropyrolysis and hydrotreating: a brief review, Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 6
  27. 27
    Anqing Zheng, Zengli Zhao, Sheng Chang, Zhen Huang, Kun Zhao, Hongxiang Wu, Xiaobo Wang, Fang He, Haibin Li, Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production, Green Chemistry, 2014, 16, 5, 2580

    CrossRef

  28. 28
    Rajeeva Thilakaratne, Tristan Brown, Yihua Li, Guiping Hu, Robert Brown, Mild catalytic pyrolysis of biomass for production of transportation fuels: a techno-economic analysis, Green Chemistry, 2014, 16, 2, 627

    CrossRef

  29. 29
    Jun Wang, Wenchao Zhang, Lianwei Wang, Ruiqi Shen, Xing Xu, Jiahai Ye, Yimin Chao, Novel Approach to the Preparation of Organic Energetic Film for Microelectromechanical Systems and Microactuator Applications, ACS Applied Materials & Interfaces, 2014, 6, 14, 10992

    CrossRef

  30. 30
    Sunil K. Maity, Opportunities, recent trends and challenges of integrated biorefinery: Part I, Renewable and Sustainable Energy Reviews, 2014,

    CrossRef

  31. 31
    Sunil K. Maity, Opportunities, recent trends and challenges of integrated biorefinery: Part II, Renewable and Sustainable Energy Reviews, 2014,

    CrossRef

  32. 32
    Guoqiang Zhou, Jian Li, Yanqing Yu, Xiangyu Li, Yujue Wang, Wei Wang, Sridhar Komarneni, Optimizing the distribution of aromatic products from catalytic fast pyrolysis of cellulose by ZSM-5 modification with boron and co-feeding of low-density polyethylene, Applied Catalysis A: General, 2014, 487, 45

    CrossRef

  33. 33
    Pranav U. Karanjkar, Robert J. Coolman, George W. Huber, Michael T. Blatnik, Saba Almalkie, Stephen M. Bruyn Kops, Triantafillos J. Mountziaris, William C. Conner, Production of aromatics by catalytic fast pyrolysis of cellulose in a bubbling fluidized bed reactor, AIChE Journal, 2014, 60, 4
  34. 34
    Ming-hui Fan, Shu-mei Deng, Tie-jun Wang, Quan-xin Li, Production of BTX through Catalytic Depolymerization of Lignin, Chinese Journal of Chemical Physics, 2014, 27, 2, 221

    CrossRef

  35. 35
    Pouya Sirous Rezaei, Hoda Shafaghat, Wan Mohd Ashri Wan Daud, Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review, Applied Catalysis A: General, 2014, 469, 490

    CrossRef

  36. 36
    Sibao Liu, Yasuyo Okuyama, Masazumi Tamura, Yoshinao Nakagawa, Akio Imai, Keiichi Tomishige, Production of Renewable Hexanols from Mechanocatalytically Depolymerized Cellulose by Using Ir-ReOx/SiO2 catalyst, ChemSusChem, 2014, 7, 12
  37. 37
    Jesse Q. Bond, Aniruddha A. Upadhye, Hakan Olcay, Geoffrey A. Tompsett, Jungho Jae, Rong Xing, David Martin Alonso, Dong Wang, Taiying Zhang, Rajeev Kumar, Andrew Foster, S. Murat Sen, Christos T. Maravelias, Robert Malina, Steven R. H. Barrett, Raul Lobo, Charles E. Wyman, James A. Dumesic, George W. Huber, Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass, Energy & Environmental Science, 2014, 7, 4, 1500

    CrossRef

  38. 38
    Shurong Wang, Bin Ru, Haizhou Lin, Wuxing Sun, Chunjiang Yu, Zhongyang Luo, Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes, Chemical Research in Chinese Universities, 2014, 30, 5, 848

    CrossRef

  39. 39
    Jesse R. McManus, Eddie Martono, John M. Vohs, Reaction of glyceraldehyde and glucose on Zn-modified Pt(111) surfaces, Catalysis Today, 2014, 237, 157

    CrossRef

  40. 40
    Calvin Mukarakate, Xiaodong Zhang, Alexander R. Stanton, David J. Robichaud, Peter N. Ciesielski, Kara Malhotra, Bryon S. Donohoe, Erica Gjersing, Robert J. Evans, David S. Heroux, Ryan Richards, Kristiina Iisa, Mark R. Nimlos, Real-time monitoring of the deactivation of HZSM-5 during upgrading of pine pyrolysis vapors, Green Chemistry, 2014, 16, 3, 1444

    CrossRef

  41. 41
    Faisal Abnisa, W. M. A. Wan Daud, Arash Arami-Niya, Brahim Si Ali, J. N. Sahu, Recovery of Liquid Fuel from the Aqueous Phase of Pyrolysis Oil Using Catalytic Conversion, Energy & Fuels, 2014, 28, 5, 3074

    CrossRef

  42. 42
    Haiyan Zhang, Xuejun Liu, Meizhen Lu, Xinyue Hu, Leigang Lu, Xiaoning Tian, Jianbing Ji, Role of Brønsted acid in selective production of furfural in biomass pyrolysis, Bioresource Technology, 2014, 169, 800

    CrossRef

  43. 43
    Zhibao Huo, Yan Fang, Dezhang Ren, Song Zhang, Guodong Yao, Xu Zeng, Fangming Jin, Selective Conversion of Glucose into Lactic Acid with Transition Metal Ions in Diluted Aqueous NaOH Solution, ACS Sustainable Chemistry & Engineering, 2014, 2, 12, 2765

    CrossRef

  44. 44
    Sunit K. Singh, Jayant D. Ekhe, Solvent effect on HZSM-5 catalyzed solvolytic depolymerization of industrial waste lignin to phenols: superiority of the water–methanol system over methanol, RSC Adv., 2014, 4, 95, 53220

    CrossRef

  45. 45
    Deivasagayam Dakshinamoorthy, Stewart P. Lewis, Michael P. Cavazza, Aaron M. Hoover, David F. Iwig, Krishnan Damodaran, Robert T. Mathers, Streamlining the conversion of biomass to polyesters: bicyclic monomers with continuous flow, Green Chemistry, 2014, 16, 4, 1774

    CrossRef

  46. 46
    Heather B. Mayes, Michael W. Nolte, Gregg T. Beckham, Brent H. Shanks, Linda J. Broadbelt, The Alpha–Bet(a) of Glucose Pyrolysis: Computational and Experimental Investigations of 5-Hydroxymethylfurfural and Levoglucosan Formation Reveal Implications for Cellulose Pyrolysis, ACS Sustainable Chemistry & Engineering, 2014, 2, 6, 1461

    CrossRef

  47. 47
    Christopher J. Gilbert, Juliana S. Espindola, William C. Conner, Jorge O. Trierweiler, George W. Huber, The Effect of Water on Furan Conversion over ZSM-5, ChemCatChem, 2014, 6, 9
  48. 48
    Qiang Lu, Yang Zhang, Chang-qing Dong, Yong-ping Yang, Hai-zhu Yu, The mechanism for the formation of levoglucosenone during pyrolysis of β-d-glucopyranose and cellobiose: A density functional theory study, Journal of Analytical and Applied Pyrolysis, 2014, 110, 34

    CrossRef

  49. 49
    Shu-mei Deng, Ming-hui Fan, Tie-jun Wang, Quan-xin Li, Transformation of Biomass into Aromatics with Zeolite Catalysts, Chinese Journal of Chemical Physics, 2014, 27, 3, 361

    CrossRef

  50. 50
    Calvin Mukarakate, Michael J. Watson, Jeroen ten Dam, Xavier Baucherel, Sridhar Budhi, Matthew M. Yung, Haoxi Ben, Kristiina Iisa, Robert M. Baldwin, Mark R. Nimlos, Upgrading biomass pyrolysis vapors over β-zeolites: role of silica-to-alumina ratio, Green Chem., 2014, 16, 12, 4891

    CrossRef

  51. 51
    Guido Busca, Heterogeneous Catalytic Materials, 2014,

    CrossRef

  52. 52
    Lin Mei Wu, Chun Hui Zhou, Dong Shen Tong, Wei Hua Yu, Bioenergy Research: Advances and Applications, 2014,

    CrossRef

  53. 53
    Charles A. Mullen, Akwasi A. Boateng, Accumulation of Inorganic Impurities on HZSM-5 Zeolites during Catalytic Fast Pyrolysis of Switchgrass, Industrial & Engineering Chemistry Research, 2013, 52, 48, 17156

    CrossRef

  54. 54
    Yan Zheng, Dengyu Chen, Xifeng Zhu, Aromatic hydrocarbon production by the online catalytic cracking of lignin fast pyrolysis vapors using Mo2N/γ-Al2O3, Journal of Analytical and Applied Pyrolysis, 2013, 104, 514

    CrossRef

  55. 55
    Sung Won Kim, Bon Seok Koo, Jae Wook Ryu, Joon Sik Lee, Cheol Joong Kim, Dong Hyun Lee, Gyung Rok Kim, Sun Choi, Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed, Fuel Processing Technology, 2013, 108, 118

    CrossRef

  56. 56
    Huiyan Zhang, Rui Xiao, Baosheng Jin, Dekui Shen, Ran Chen, Guomin Xiao, Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: Effect of different catalysts, Bioresource Technology, 2013, 137, 82

    CrossRef

  57. 57
    Ville Paasikallio, Foster Agblevor, Anja Oasmaa, Jani Lehto, Juha Lehtonen, Catalytic Pyrolysis of Forest Thinnings with ZSM-5 Catalysts: Effect of Reaction Temperature on Bio-oil Physical Properties and Chemical Composition, Energy & Fuels, 2013, 27, 12, 7587

    CrossRef

  58. 58
    Shanshan Shao, Huiyan Zhang, Rui Xiao, Dekui Shen, Jian Zheng, Comparison of Catalytic Characteristics of Biomass Derivates with Different Structures Over ZSM-5, BioEnergy Research, 2013, 6, 4, 1173

    CrossRef

  59. 59
    Zhuopeng Wang, Paul Dornath, Chun-Chih Chang, Huiyong Chen, Wei Fan, Confined synthesis of three-dimensionally ordered mesoporous-imprinted zeolites with tunable morphology and Si/Al ratio, Microporous and Mesoporous Materials, 2013, 181, 8

    CrossRef

  60. 60
    Anqing Zheng, Zengli Zhao, Sheng Chang, Zhen Huang, Xiaobo Wang, Fang He, Haibin Li, Effect of torrefaction on structure and fast pyrolysis behavior of corncobs, Bioresource Technology, 2013, 128, 370

    CrossRef

  61. 61
    Christopher R. Waidmann, Aaron W. Pierpont, Enrique R. Batista, John C. Gordon, Richard L. Martin, L. A. “Pete” Silks, Ryan M. West, Ruilian Wu, Functional group dependence of the acid catalyzed ring opening of biomass derived furan rings: an experimental and theoretical study, Catalysis Science & Technology, 2013, 3, 1, 106

    CrossRef

  62. 62
    Mingyuan He, Yuhan Sun, Buxing Han, Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling, Angewandte Chemie International Edition, 2013, 52, 37
  63. 63
    Mingyuan He, Yuhan Sun, Buxing Han, Grüne Kohlenstoffwissenschaft: eine wissenschaftliche Grundlage für das Verknüpfen von Verarbeitung, Nutzung und Recycling der Kohlenstoffressourcen, Angewandte Chemie, 2013, 125, 37
  64. 64
    Yao-Bing Huang, Zhen Yang, Meng-Yuan Chen, Jian-Jun Dai, Qing-Xiang Guo, Yao Fu, Heterogeneous Palladium Catalysts for Decarbonylation of Biomass-Derived Molecules under Mild Conditions, ChemSusChem, 2013, 6, 8
  65. 65
    Yuxin Wang, Jinhu Wu, Shengnian Wang, Hydrodeoxygenation of bio-oil over Pt-based supported catalysts: importance of mesopores and acidity of the support to compounds with different oxygen contents, RSC Advances, 2013, 3, 31, 12635

    CrossRef

  66. 66
    Xiangyu Li, Haifeng Zhang, Jian Li, Lu Su, Jiane Zuo, Sridhar Komarneni, Yujue Wang, Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene, Applied Catalysis A: General, 2013, 455, 114

    CrossRef

  67. 67
    Peiyan Bi, Yanni Yuan, Minghui Fan, Peiwen Jiang, Qi Zhai, Quanxin Li, Production of aromatics through current-enhanced catalytic conversion of bio-oil tar, Bioresource Technology, 2013, 136, 222

    CrossRef

  68. 68
    Yousif S. Adam, Yan Fang, Zhibao Huo, Xu Zeng, Zhenzi Jing, Fangming Jin, Production of carboxylic acids from glucose with metal oxides under hydrothermal conditions, Research on Chemical Intermediates, 2013,

    CrossRef

  69. 69
    Charles A. Mullen, Akwasi A. Boateng, Neil M. Goldberg, Production of Deoxygenated Biomass Fast Pyrolysis Oils via Product Gas Recycling, Energy & Fuels, 2013, 27, 7, 3867

    CrossRef

  70. 70
    Yan-ni Yuan, Tie-jun Wang, Quan-xin Li, Production of Low-carbon Light Olefins from Catalytic Cracking of Crude Bio-oil, Chinese Journal of Chemical Physics, 2013, 26, 2, 237

    CrossRef

  71. 71
    Huamin Wang, Jonathan Male, Yong Wang, Recent Advances in Hydrotreating of Pyrolysis Bio-Oil and Its Oxygen-Containing Model Compounds, ACS Catalysis, 2013, 3, 5, 1047

    CrossRef

  72. 72
    Yanan Zhang, Tristan R. Brown, Guiping Hu, Robert C. Brown, Techno-economic analysis of two bio-oil upgrading pathways, Chemical Engineering Journal, 2013, 225, 895

    CrossRef

  73. 73
    Sheng Chu, Ayyagari V. Subrahmanyam, George W. Huber, The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound, Green Chemistry, 2013, 15, 1, 125

    CrossRef

  74. 74
    Alex D. Paulsen, Matthew S. Mettler, Paul J. Dauenhauer, The Role of Sample Dimension and Temperature in Cellulose Pyrolysis, Energy & Fuels, 2013, 27, 4, 2126

    CrossRef

  75. 75
    Jiu-fang Zhu, Ji-cong Wang, Quan-xin Li, Transformation of Bio-oil into BTX by Bio-oil Catalytic Cracking, Chinese Journal of Chemical Physics, 2013, 26, 4, 477

    CrossRef

  76. 76
    Cristian Torri, Daniele Fabbri, Laura Garcia-Alba, Derk Willem Frederik Brilman, Upgrading of oils derived from hydrothermal treatment of microalgae by catalytic cracking over H-ZSM-5: A comparative Py–GC–MS study, Journal of Analytical and Applied Pyrolysis, 2013, 101, 28

    CrossRef

  77. 77
    Jan van der Waal, Ed de Jong, Producing Fuels and Fine Chemicals from Biomass Using Nanomaterials, 2013,

    CrossRef

  78. 78
    Juan J. Bravo-Suárez, Raghunath V. Chaudhari, Bala Subramaniam, Novel Materials for Catalysis and Fuels Processing, 2013,

    CrossRef

  79. 79
    Juan Carlos Serrano-Ruiz, Rafael Luque, James H. Clark, The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals, 2013,

    CrossRef

  80. 80
    Subhash Bhatia, Siti Salwa Hashim, New and Future Developments in Catalysis, 2013,

    CrossRef

  81. 81
    Elif Gürbüz, Jesse Q. Bond, James A. Dumesic, Yuriy Román-Leshkov, The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals, 2013,

    CrossRef

  82. 82
    Wan Nor Roslam Wan Isahak, Mohamed W.M. Hisham, Mohd Ambar Yarmo, Taufiq-yap Yun Hin, A review on bio-oil production from biomass by using pyrolysis method, Renewable and Sustainable Energy Reviews, 2012, 16, 8, 5910

    CrossRef

  83. 83
    Yohan Richardson, Joël Blin, Anne Julbe, A short overview on purification and conditioning of syngas produced by biomass gasification: Catalytic strategies, process intensification and new concepts, Progress in Energy and Combustion Science, 2012, 38, 6, 765

    CrossRef

  84. 84
    Vishal Agarwal, Paul J. Dauenhauer, George W. Huber, Scott M. Auerbach, Ab Initio Dynamics of Cellulose Pyrolysis: Nascent Decomposition Pathways at 327 and 600 °C, Journal of the American Chemical Society, 2012, 134, 36, 14958

    CrossRef

  85. 85
    Jifeng Pang, Aiqin Wang, Mingyuan Zheng, Yanhua Zhang, Yanqiang Huang, Xiaowei Chen, Tao Zhang, Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts, Green Chemistry, 2012, 14, 3, 614

    CrossRef

  86. 86
    Wei-Liang Fanchiang, Yu-Chuan Lin, Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts, Applied Catalysis A: General, 2012, 419-420, 102

    CrossRef

  87. 87
    Xiangyu Li, Lu Su, Yujue Wang, Yanqing Yu, Chengwen Wang, Xiaoliang Li, Zhihua Wang, Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons, Frontiers of Environmental Science & Engineering, 2012, 6, 3, 295

    CrossRef

  88. 88
    Huiyan Zhang, Torren R. Carlson, Rui Xiao, George W. Huber, Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor, Green Chemistry, 2012, 14, 1, 98

    CrossRef

  89. 89
    Vaishnavi Srinivasan, Sushil Adhikari, Shyamsundar Ayalur Chattanathan, Sunkyu Park, Catalytic Pyrolysis of Torrefied Biomass for Hydrocarbons Production, Energy & Fuels, 2012, 26, 12, 7347

    CrossRef

  90. 90
    Mats Käldström, Narendra Kumar, Mikko Tenho, Maksim V. Mokeev, Yulia E. Moskalenko, Dmitry Yu. Murzin, Catalytic Transformations of Birch Kraft Pulp, ACS Catalysis, 2012, 2, 7, 1381

    CrossRef

  91. 91
    Zhiqiang Ma, Ekaterina Troussard, Jeroen A. van Bokhoven, Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis, Applied Catalysis A: General, 2012, 423-424, 130

    CrossRef

  92. 92
    Beatriz Valle, Pedro Castaño, Martin Olazar, Javier Bilbao, Ana G. Gayubo, Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst, Journal of Catalysis, 2012, 285, 1, 304

    CrossRef

  93. 93
    Ye Xu, Decomposition of Furan on Pd(111), Topics in Catalysis, 2012, 55, 5-6, 290

    CrossRef

  94. 94
    Anqing Zheng, Zengli Zhao, Sheng Chang, Zhen Huang, Fang He, Haibin Li, Effect of Torrefaction Temperature on Product Distribution from Two-Staged Pyrolysis of Biomass, Energy & Fuels, 2012, 26, 5, 2968

    CrossRef

  95. 95
    N. Schwaiger, V. Witek, R. Feiner, H. Pucher, K. Zahel, A. Pieber, P. Pucher, E. Ahn, B. Chernev, H. Schroettner, P. Wilhelm, M. Siebenhofer, Formation of liquid and solid products from liquid phase pyrolysis, Bioresource Technology, 2012, 124, 90

    CrossRef

  96. 96
    Yuxin Wang, Tao He, Kaituo Liu, Jinhu Wu, Yunming Fang, From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: Hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis, Bioresource Technology, 2012, 108, 280

    CrossRef

  97. 97
    Oz M. Gazit, Alexander Katz, Grafted Poly(1[RIGHTWARDS ARROW]4-β-glucan) Strands on Silica: A Comparative Study of Surface Reactivity as a Function of Grafting Density, Langmuir, 2012, 28, 1, 431

    CrossRef

  98. You have free access to this content98
    Robert T. Mathers, How well can renewable resources mimic commodity monomers and polymers?, Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50, 1
  99. 99
    Mark M. Wright, Yuriy Román-Leshkov, William H. Green, Investigating the techno-economic trade-offs of hydrogen source using a response surface model of drop-in biofuel production via bio-oil upgrading, Biofuels, Bioproducts and Biorefining, 2012, 6, 5
  100. 100
    Joungmo Cho, Sheng Chu, Paul J. Dauenhauer, George W. Huber, Kinetics and reaction chemistry for slow pyrolysis of enzymatic hydrolysis lignin and organosolv extracted lignin derived from maplewood, Green Chemistry, 2012, 14, 2, 428

    CrossRef

  101. 101
    C. Bramsiepe, S. Sievers, T. Seifert, G.D. Stefanidis, D.G. Vlachos, H. Schnitzer, B. Muster, C. Brunner, J.P.M. Sanders, M.E. Bruins, G. Schembecker, Low-cost small scale processing technologies for production applications in various environments—Mass produced factories, Chemical Engineering and Processing: Process Intensification, 2012, 51, 32

    CrossRef

  102. 102
    Andrew J. Foster, Jungho Jae, Yu-Ting Cheng, George W. Huber, Raul F. Lobo, Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5, Applied Catalysis A: General, 2012, 423-424, 154

    CrossRef

  103. 103
    Yao-Bing Huang, Zhen Yang, Jian-Jun Dai, Qing-Xiang Guo, Yao Fu, Production of high quality fuels from lignocellulose-derived chemicals: a convenient C–C bond formation of furfural, 5-methylfurfural and aromatic aldehyde, RSC Advances, 2012, 2, 30, 11211

    CrossRef

  104. 104
    Yu-Ting Cheng, Zhuopeng Wang, Christopher J. Gilbert, Wei Fan, George W. Huber, Production of p-Xylene from Biomass by Catalytic Fast Pyrolysis Using ZSM-5 Catalysts with Reduced Pore Openings, Angewandte Chemie, 2012, 124, 44
  105. 105
    Yu-Ting Cheng, Zhuopeng Wang, Christopher J. Gilbert, Wei Fan, George W. Huber, Production of p-Xylene from Biomass by Catalytic Fast Pyrolysis Using ZSM-5 Catalysts with Reduced Pore Openings, Angewandte Chemie International Edition, 2012, 51, 44
  106. 106
    Yu-Ting Cheng, Jungho Jae, Jian Shi, Wei Fan, George W. Huber, Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts, Angewandte Chemie, 2012, 124, 6
  107. 107
    Yu-Ting Cheng, Jungho Jae, Jian Shi, Wei Fan, George W. Huber, Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts, Angewandte Chemie International Edition, 2012, 51, 6
  108. 108
    Yu-Ting Cheng, George W. Huber, Production of targeted aromatics by using Diels–Alder classes of reactions with furans and olefins over ZSM-5, Green Chemistry, 2012, 14, 11, 3114

    CrossRef

  109. 109
    Xuejun Liu, Ning Ai, Haiyan Zhang, Meizhen Lu, Dengxiang Ji, Fengwen Yu, Jianbing Ji, Quantification of glucose, xylose, arabinose, furfural, and HMF in corncob hydrolysate by HPLC-PDA–ELSD, Carbohydrate Research, 2012, 353, 111

    CrossRef

  110. 110
    Chun-Chih Chang, Zhuopeng Wang, Paul Dornath, Hong Je Cho, Wei Fan, Rapid synthesis of Sn-Beta for the isomerization of cellulosic sugars, RSC Advances, 2012, 2, 28, 10475

    CrossRef

  111. 111
    Matthew S. Mettler, Alex D. Paulsen, Dionisios G. Vlachos, Paul J. Dauenhauer, The chain length effect in pyrolysis: bridging the gap between glucose and cellulose, Green Chemistry, 2012, 14, 5, 1284

    CrossRef

  112. 112
    Anthony Dufour, Miguel Castro-Diaz, Nicolas Brosse, Mohamed Bouroukba, Colin Snape, The Origin of Molecular Mobility During Biomass Pyrolysis as Revealed by In situ 1H NMR Spectroscopy, ChemSusChem, 2012, 5, 7
  113. 113
    Yanqing Yu, Xiangyu Li, Lu Su, Ying Zhang, Yujue Wang, Huizhong Zhang, The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts, Applied Catalysis A: General, 2012, 447-448, 115

    CrossRef

  114. 114
    Ozcan Konur, The scientometric evaluation of the research on the production of bioenergy from biomass, Biomass and Bioenergy, 2012, 47, 504

    CrossRef

  115. 115
    Andrew J. Foster, Phuong T. M. Do, Raul F. Lobo, The Synergy of the Support Acid Function and the Metal Function in the Catalytic Hydrodeoxygenation of m-Cresol, Topics in Catalysis, 2012, 55, 3-4, 118

    CrossRef

  116. 116
    Matthew S. Mettler, Dionisios G. Vlachos, Paul J. Dauenhauer, Top ten fundamental challenges of biomass pyrolysis for biofuels, Energy & Environmental Science, 2012, 5, 7, 7797

    CrossRef

  117. 117
    Lei Cheng, Larry A. Curtiss, Rajeev Surendran Assary, Jeffrey Greeley, Torsten Kerber, Joachim Sauer, Adsorption and Diffusion of Fructose in Zeolite HZSM-5: Selection of Models and Methods for Computational Studies, The Journal of Physical Chemistry C, 2011, 115, 44, 21785

    CrossRef

  118. 118
    Huiyan Zhang, Rui Xiao, Denghui Wang, Guangying He, Shanshan Shao, Jubing Zhang, Zhaoping Zhong, Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres, Bioresource Technology, 2011, 102, 5, 4258

    CrossRef

  119. 119
    Carlo Perego, Aldo Bosetti, Biomass to fuels: The role of zeolite and mesoporous materials, Microporous and Mesoporous Materials, 2011, 144, 1-3, 28

    CrossRef

  120. 120
    Huiyan Zhang, Yu-Ting Cheng, Tushar P. Vispute, Rui Xiao, George W. Huber, Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio, Energy & Environmental Science, 2011, 4, 6, 2297

    CrossRef

  121. 121
    Chun-Hui Zhou, Xi Xia, Chun-Xiang Lin, Dong-Shen Tong, Jorge Beltramini, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels, Chemical Society Reviews, 2011, 40, 11, 5588

    CrossRef

  122. 122
    Charles A. Mullen, Akwasi A. Boateng, David J. Mihalcik, Neil M. Goldberg, Catalytic Fast Pyrolysis of White Oak Wood in a Bubbling Fluidized Bed, Energy & Fuels, 2011, 25, 11, 5444

    CrossRef

  123. 123
    David L. Compton, Michael A. Jackson, David J. Mihalcik, Charles A. Mullen, Akwasi A. Boateng, Catalytic pyrolysis of oak via pyroprobe and bench scale, packed bed pyrolysis reactors, Journal of Analytical and Applied Pyrolysis, 2011, 90, 2, 174

    CrossRef

  124. 124
    Juan Carlos Serrano-Ruiz, James A. Dumesic, Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels, Energy & Environmental Science, 2011, 4, 1, 83

    CrossRef

  125. 125
    Yu-Ting Cheng, George W. Huber, Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction, ACS Catalysis, 2011, 1, 6, 611

    CrossRef

  126. 126
    Venugopal Mendu, Anne E Harman-Ware, Mark Crocker, Jungho Jae, Jozsef Stork, Samuel Morton, Andrew Placido, George Huber, Seth DeBolt, Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production, Biotechnology for Biofuels, 2011, 4, 1, 43

    CrossRef

  127. 127
    Jungho Jae, Geoffrey A. Tompsett, Andrew J. Foster, Karl D. Hammond, Scott M. Auerbach, Raul F. Lobo, George W. Huber, Investigation into the shape selectivity of zeolite catalysts for biomass conversion, Journal of Catalysis, 2011, 279, 2, 257

    CrossRef

  128. 128
    Wenqin Shen, Geoffrey A. Tompsett, Karl D. Hammond, Rong Xing, Fulya Dogan, Clare P. Grey, W. Curtis Conner, Scott M. Auerbach, George W. Huber, Liquid phase aldol condensation reactions with MgO–ZrO2 and shape-selective nitrogen-substituted NaY, Applied Catalysis A: General, 2011, 392, 1-2, 57

    CrossRef

  129. 129
    Torren R. Carlson, Yu-Ting Cheng, Jungho Jae, George W. Huber, Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust, Energy & Environmental Science, 2011, 4, 1, 145

    CrossRef

  130. 130
    Avelino Corma, Olalla de la Torre, Michael Renz, Nicolas Villandier, Production of High-Quality Diesel from Biomass Waste Products, Angewandte Chemie, 2011, 123, 10
  131. 131
    Avelino Corma, Olalla de la Torre, Michael Renz, Nicolas Villandier, Production of High-Quality Diesel from Biomass Waste Products, Angewandte Chemie International Edition, 2011, 50, 10
  132. 132
    Suchithra Thangalazhy-Gopakumar, Sushil Adhikari, Ram B. Gupta, Maobing Tu, Steven Taylor, Production of hydrocarbon fuels from biomass using catalytic pyrolysis under helium and hydrogen environments, Bioresource Technology, 2011, 102, 12, 6742

    CrossRef

  133. 133
    Fangming Jin, Heiji Enomoto, Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions, Energy & Environmental Science, 2011, 4, 2, 382

    CrossRef

  134. 134
    David J. Mihalcik, Charles A. Mullen, Akwasi A. Boateng, Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components, Journal of Analytical and Applied Pyrolysis, 2011, 92, 1, 224

    CrossRef

  135. 135
    Vishal Agarwal, George W. Huber, W. Curtis Conner, Scott M. Auerbach, Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures, The Journal of Chemical Physics, 2011, 135, 13, 134506

    CrossRef

  136. 136
    Huyen Thanh Vo, Chang Soo Kim, Byoung Sung Ahn, Hoon Sik Kim, Hyunjoo Lee, Study on Dissolution and Regeneration of Poplar Wood in Imidazolium-Based Ionic Liquids, Journal of Wood Chemistry and Technology, 2011, 31, 2, 89

    CrossRef

  137. 137
    M. Käldström, N. Kumar, T. Heikkilä, M. Tiitta, T. Salmi, D. Yu. Murzin, Transformation of levoglucosan over H-MCM-22 zeolite and H-MCM-41 mesoporous molecular sieve catalysts, Biomass and Bioenergy, 2011, 35, 5, 1967

    CrossRef

  138. 138
    Uffe V. Mentzel, Martin S. Holm, Utilization of biomass: Conversion of model compounds to hydrocarbons over zeolite H-ZSM-5, Applied Catalysis A: General, 2011, 396, 1-2, 59

    CrossRef

  139. 139
    Esben Taarning, Christian M. Osmundsen, Xiaobo Yang, Bodil Voss, Simon I. Andersen, Claus H. Christensen, Zeolite-catalyzed biomass conversion to fuels and chemicals, Energy & Environmental Science, 2011, 4, 3, 793

    CrossRef

  140. 140
    Elif Gürbüz, Drew Braden, James Dumesic, Renewable Resources and Renewable Energy, 2011,

    CrossRef

  141. 141
    M.A. Morris, Handbook of Biofuels Production, 2011,

    CrossRef

  142. 142
    John Regalbuto, An NSF perspective on next generation hydrocarbon biorefineries, Computers & Chemical Engineering, 2010, 34, 9, 1393

    CrossRef

  143. 143
    Y-H Percival Zhang, Jibin Sun, Jian-Jiang Zhong, Biofuel production by in vitro synthetic enzymatic pathway biotransformation, Current Opinion in Biotechnology, 2010, 21, 5, 663

    CrossRef

  144. 144
    Dionisios G. Vlachos, Jingguang G. Chen, Raymond J. Gorte, George W. Huber, Michael Tsapatsis, Catalysis Center for Energy Innovation for Biomass Processing: Research Strategies and Goals, Catalysis Letters, 2010, 140, 3-4, 77

    CrossRef

  145. 145
    Juan Carlos Serrano-Ruiz, Ryan M. West, James A. Dumesic, Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals, Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 1, 79

    CrossRef

  146. 146
    Richard French, Stefan Czernik, Catalytic pyrolysis of biomass for biofuels production, Fuel Processing Technology, 2010, 91, 1, 25

    CrossRef

  147. 147
    A Aho, N Kumar, K Eränen, T Salmi, B Holmbom, P Backman, M Hupa, D Yu Murzin, Catalytic pyrolysis of woody biomass, Biofuels, 2010, 1, 2, 261

    CrossRef

  148. 148
    Charles A. Mullen, Akwasi A. Boateng, Catalytic pyrolysis-GC/MS of lignin from several sources, Fuel Processing Technology, 2010, 91, 11, 1446

    CrossRef

  149. 149
    Denghui Wang, Rui Xiao, Huiyan Zhang, Guangying He, Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis, Journal of Analytical and Applied Pyrolysis, 2010, 89, 2, 171

    CrossRef

  150. 150
    Jungho Jae, Geoffrey A. Tompsett, Yu-Chuan Lin, Torren R. Carlson, Jiacheng Shen, Taiying Zhang, Bin Yang, Charles E. Wyman, W. Curtis Conner, George W. Huber, Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis, Energy & Environmental Science, 2010, 3, 3, 358

    CrossRef

  151. 151
    Won Chan Park, Arvind Atreya, Howard R. Baum, Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis, Combustion and Flame, 2010, 157, 3, 481

    CrossRef

  152. 152
    Daniele Fabbri, Alessio Adamiano, Cristian Torri, GC-MS determination of polycyclic aromatic hydrocarbons evolved from pyrolysis of biomass, Analytical and Bioanalytical Chemistry, 2010, 397, 1, 309

    CrossRef

  153. 153
    Regina Palkovits, Kameh Tajvidi, Joanna Procelewska, Roberto Rinaldi, Agnieszka Ruppert, Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts, Green Chemistry, 2010, 12, 6, 972

    CrossRef

  154. 154
    Cristian Torri, Matti Reinikainen, Christian Lindfors, Daniele Fabbri, Anja Oasmaa, Eva Kuoppala, Investigation on catalytic pyrolysis of pine sawdust: Catalyst screening by Py-GC-MIP-AED, Journal of Analytical and Applied Pyrolysis, 2010, 88, 1, 7

    CrossRef

  155. 155
    T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G. W. Huber, Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils, Science, 2010, 330, 6008, 1222

    CrossRef

  156. 156
    Li-Ning Ding, Ai-Qin Wang, Ming-Yuan Zheng, Tao Zhang, Selective Transformation of Cellulose into Sorbitol by Using a Bifunctional Nickel Phosphide Catalyst, ChemSusChem, 2010, 3, 7
  157. You have free access to this content157
    Joungmo Cho, Jeffrey M. Davis, George W. Huber, The Intrinsic Kinetics and Heats of Reactions for Cellulose Pyrolysis and Char Formation, ChemSusChem, 2010, 3, 10
  158. You have free access to this content158
    Amanda-Lynn Marshall, Peter J. Alaimo, Useful Products from Complex Starting Materials: Common Chemicals from Biomass Feedstocks, Chemistry - A European Journal, 2010, 16, 17
  159. 159
    Y.-H. Percival Zhang, A sweet out-of-the-box solution to the hydrogen economy: is the sugar-powered car science fiction?, Energy & Environmental Science, 2009, 2, 3, 272

    CrossRef

  160. 160
    Torren R. Carlson, Geoffrey A. Tompsett, William C. Conner, George W. Huber, Aromatic Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks, Topics in Catalysis, 2009, 52, 3, 241

    CrossRef

  161. 161
    Keith L. Hohn, Yu-Chuan Lin, Catalytic Partial Oxidation of Methanol and Ethanol for Hydrogen Generation, ChemSusChem, 2009, 2, 10
  162. 162
    Andrew Carroll, Chris Somerville, Cellulosic Biofuels, Annual Review of Plant Biology, 2009, 60, 1, 165

    CrossRef

  163. 163
    J. R. Regalbuto, Cellulosic Biofuels--Got Gasoline?, Science, 2009, 325, 5942, 822

    CrossRef

  164. 164
    Ning Sun, Mustafizur Rahman, Ying Qin, Mirela L. Maxim, Héctor Rodríguez, Robin D. Rogers, Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate, Green Chemistry, 2009, 11, 5, 646

    CrossRef

  165. 165
    Torren R. Carlson, Jungho Jae, George W. Huber, Mechanistic Insights from Isotopic Studies of Glucose Conversion to Aromatics Over ZSM-5, ChemCatChem, 2009, 1, 1
  166. 166
    Jason Baxter, Zhixi Bian, Gang Chen, David Danielson, Mildred S. Dresselhaus, Andrei G. Fedorov, Timothy S. Fisher, Christopher W. Jones, Edward Maginn, Uwe Kortshagen, Arumugam Manthiram, Arthur Nozik, Debra R. Rolison, Timothy Sands, Li Shi, David Sholl, Yiying Wu, Nanoscale design to enable the revolution in renewable energy, Energy & Environmental Science, 2009, 2, 6, 559

    CrossRef

  167. 167
    Oliver R. Inderwildi, David A. King, Quo vadis biofuels?, Energy & Environmental Science, 2009, 2, 4, 343

    CrossRef

  168. 168
    Paul J. Dauenhauer, Joshua L. Colby, Christine M. Balonek, Wieslaw J. Suszynski, Lanny D. Schmidt, Reactive boiling of cellulose for integrated catalysis through an intermediate liquid, Green Chemistry, 2009, 11, 10, 1555

    CrossRef

  169. 169
    Brett Digman, Hyun Soo Joo, Dong-Shik Kim, Recent progress in gasification/pyrolysis technologies for biomass conversion to energy, Environmental Progress & Sustainable Energy, 2009, 28, 1
  170. 170
    Yu-Chuan Lin, George W. Huber, The critical role of heterogeneous catalysis in lignocellulosic biomass conversion, Energy & Environmental Science, 2009, 2, 1, 68

    CrossRef

  171. 171
    Mark Mascal, Edward B. Nikitin, Towards the Efficient, Total Glycan Utilization of Biomass, ChemSusChem, 2009, 2, 5
  172. 172
    James O. Titiloye, Catalysis in Biomass Transformation,
  173. 173
    Geoffrey A. Tompsett, Ning Li, George W. Huber, Catalytic Conversion of Sugars to Fuels,
  174. 174
    Challenges in Aqueous-Phase Biomass Hydrolysis Route: Recalcitrance,
  175. 175
    Robert C. Brown, Introduction to Thermochemical Processing of Biomass into Fuels, Chemicals, and Power,
  176. 176
    Anthony V. Bridgwater, Upgrading Fast Pyrolysis Liquids,