SEARCH

SEARCH BY CITATION

  • 1
    R. A. Sheldon, J. K. Kochi, Metal Catalyzed Oxidations of Organic Compounds, Academic, New York, 1981.
  • 2
    F. Cavani, J. H. Teles, ChemSusChem 2009, 2, 508.
  • 3
    G. Franz, R. A. Sheldon, Oxidation, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
  • 4
    N. M. Emanuel, E. T. Denisov, Z. K. Maizus, Liquid Phase Oxidation of Hydrocarbons, Plenum, New York, 1967.
  • 5
    The characteristic lifetime τ of ROO radicals is given by 1/{2kterm[ROO]}. Specifically for the case of α-pinene oxidation at 363 K, [ROO] is already as high as 1.5×10−7M [derived experimentally from Equation (9)] at 0.5 % conversion; hence τ is as low as 1–5 s, given 2kterm≤6×106M−1 s−1. This ROO lifetime is much shorter than the timescale of several minutes over which [ROO] changes significantly, such that a [ROO] quasi-steady-state will be established immediately and maintained throughout the reaction.
  • 6
    I. Hermans, T. L. Nguyen, P. A. Jacobs, J. Peeters, ChemPhysChem 2005, 6, 637.
  • 7
    I. Hermans, J. Peeters, P. A. Jacobs, J. Org. Chem. 2007, 72, 3057.
  • 8
    I. Hermans, P. A. Jacobs, J. Peeters, J. Mol. Catal. A: Chem. 2006, 251, 221.
  • 9
    I. Hermans, J. Peeters, P. A. Jacobs, Top. Catal. 2008, 50, 124.
  • 10
    L. Vereecken, T. L. Nguyen, I. Hermans, J. Peeters, Chem. Phys. Lett. 2004, 393, 432.
  • 11
    I. Hermans, J. Peeters, L. Vereecken, P. Jacobs, ChemPhysChem 2007, 8, 2678.
  • 12
    I. Hermans, P. A. Jacobs, J. Peeters, Chem. Eur. J. 2007, 13, 754.
  • 13
    I. Hermans, J. Peeters, P. A. Jacobs, J. Phys. Chem. A 2008, 112, 1747.
  • 14
    I. Hermans, P. A. Jacobs, J. Peeters, Chem. Eur. J. 2006, 12, 4229.
  • 15
    C. A. Tolman, J. D. Druliner, M. J. Nappa, N. Herron, in Activation and Functionalization of Alkanes (Ed.: C. L. Hill), Wiley-VCH, Weinheim, 1989, pp. 303.
  • 16
    K. G. Fahlbusch, F. J. Hammerschmidt, J. Panten, W. Pickenhagen, D. Schatkowski, Flavors and Fragrances, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005.
  • 17
    J. P. Vité, W. Francke, Chem. Unserer Zeit 1985, 19, 11.
  • 18
    R. N. Moore, C. Golumbic, G. S. Fisher, J. Am. Chem. Soc. 1956, 78, 1173.
  • 19
     
  • 19a
    J. E. Ancel, N. V. Maksimchuk, I. L. Simakova, V. A. Semikolenov, Appl. Catal. A: Gen. 2004, 272, 109;
  • 19b
    L. I. Kuznetsova, N. I. Kiznetsova, A. S. Lisitsyn, I. E. Beck, V. A. Likholobov, Kinet. Catal. 2007, 48, 38;
  • 19c
    A. N. Kislitsyn, I. N. Klabukova, A. N. Trofimov, Chem. Plant Raw Mater. 2004, 3, 109116.
  • 20
    S. G. Bell, X. Chen, R. J. Sowden, F. Xu, J. N. Williams, L. L. Wong, Z. Rao, J. Am. Chem. Soc. 2003, 125, 705.
  • 21
    M. J. da Silva, P. Robles–Dutenhefner, L. Menini, E. V. Gusevskaya, J. Mol. Catal. A: Chem. 2003, 201, 71.
  • 22
    C. C. Guo, W. J. Yang, Y. L. Mao, J. Mol. Catal. A: Chem. 2005, 226, 279.
  • 23
    E. F. Murphy, T. Mallat, A. Baiker, Catal. Today 2000, 57, 115.
  • 24a
    P. A. Robles-Dutenhefner, M. J. da Silva, L. S. Sales, E. M. B. Sousa, E. V. Gusevskaya, J. Mol. Catal. A: Chem. 2004, 217, 139,
  • 24b
    L. Menini, M. C. Pereira, L. A. Parreira, J. D. Fabris, E. V. Gusevskaya, J. Catal. 2008, 254, 355.
  • 25
    J. Mao, X. Hu, H. Li, Y. Sun, C. Wang, Z. Chen, Green Chem. 2008, 10, 827.
  • 26
    N. V. Maksimchuk, M. S. Melgunov, J. Mrowiec–Białoń, A. B. Jarzębski, Yu. A. Chesalov, O. A. Kholdeeva, J. Catal. 2007, 246, 241.
  • 27
    A comparison of mass spectrometry data with commercially available (S)-cis-verbenol (Sigma Aldrich, 95 %) reveals that the synthesized verbenol shows slightly different fragmentation intensities for the following m/z values: 55, 59, 79, 81, 91, and 94. The synthesized verbenol can therefore not purely consist of the cis-diastereomer. This observation is in agreement with the B3LYP/6-31G(d,p) calculated energy difference for the diastereo-determining intermediate radicals: E(cis-R(a)OO)-E(trans-R(a)OO)=0.4 kcal mol−1, which is small and could generate a small diastereomeric excess of the trans oxidation products.
  • 28
    L. Vereecken, J. Peeters, Chem. Phys. Lett. 2001, 333, 162.
  • 29
    W. Tsang, J. Phys. Chem. Ref. Data 1991, 20, 221.
  • 30
    D. E. van Sickle, F. R. Mayo, J. Arluck, J. Org. Chem. 1967, 32, 3680.
  • 31
    The value for the Henry coefficient of O2 in α-pinene used in the text (35 mM bar−1) is the arithmetic mean of the value we measured for N2 in α-pinene (30 mM bar−1; 0–100 bar) and the National Institute of Standards and Technology (NIST) recommended value for O2 in β-pinene (40 mM bar−1). See R. Sander, “Henry’s Law Constants”, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (Eds. P. J. Linstrom, W. G. Mallard), National Institute of Standards and Technology, Gaithersburg, 2008 . See also http://webbook.nist.gov (accessed November 2009).
  • 32
    Z. Alfassi, The Chemistry of Free Radicals (Ed.: Z. Alfassi), Wiley, West Sussex, 1997.
  • 33
    P. J. Roden, M. S. Stark, D. J. Waddington, Int. J. Chem. Kinet. 1999, 31, 277.
  • 34
    L. Zhang, K. A. Kitney, M. A. Ferenac, W. Deng, T. S. Dibble, J. Phys. Chem. A 2004, 108, 447.
  • 35
    Pseudo-first-order rate constant=3×2.0×108M−1 s−1×exp(−3.5 kcal mol−1)×[RH], given the reaction path degeneracy of three and [RH]=6.3 m.
  • 36
    J. Peeters, G. Fantechi, L. Vereecken, J. Atmos. Chem. 2004, 48, 59.
  • 37
    A. A. Boyd, P. M. Flaud, N. Daugey, R. Lesclaux, J. Phys. Chem. A 2003, 107, 818.
  • 38
    Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
  • 39
     
  • 39a
    A. D. Becke, J. Chem. Phys. 1992, 96, 2155;
  • 39b
    A. D. Becke, J. Chem. Phys. 1992, 97, 9173;
  • 39c
    A. D. Becke, J. Chem. Phys. 1993, 98, 5648;
  • 39d
    C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.