• catalysis;
  • ionic liquids;
  • oxidation;
  • rhenium;
  • sustainable chemistry


The requirement that chemical processes are sustainabable, reflected in waste reduction and the use of safe reagents and reaction conditions, is becoming even more stringent as a result of pressure by society and governments to preserve the environment and protect human health. Catalysis offers numerous benefits related to green chemistry, including lowered energetic reaction requirements; catalytic, rather than stoichiometric, amounts of materials; increased selectivity; lowered consumption of processing and separation agents; and, in many cases, the use of less-toxic compounds. Our research group has for a long time been studying methyltrioxorhenium in the oxyfunctionalization of different substrates, by using H2O2 or its urea-hydrogen peroxide complex as the primary oxidant. In this Review paper we aim to provide a full literature account on the catalytic activity and selectivity of methyltrioxorhenium in the oxyfunctionalization reaction, either in nonconventional solvents or under solvent-free conditions, with a particular emphasis on the use of ionic liquids as green reaction media.