SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Hemant Choudhary, Shun Nishimura, Kohki Ebitani, Synthesis of high-value organic acids from sugars promoted by hydrothermally loaded Cu oxide species on magnesia, Applied Catalysis B: Environmental, 2015, 162, 1

    CrossRef

  2. 2
    Yanliang Yang, Zhongtian Du, Jiping Ma, Fang Lu, Junjie Zhang, Jie Xu, Biphasic Catalytic Conversion of Fructose by Continuous Hydrogenation of HMF over a Hydrophobic Ruthenium Catalyst, ChemSusChem, 2014, 7, 5
  3. 3
    Qiuhe Ren, Yizheng Huang, Hong Ma, Jin Gao, Jie Xu, Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural promoted by metal halides, Chinese Journal of Catalysis, 2014, 35, 4, 496

    CrossRef

  4. 4
    Tianfu Wang, Michael W. Nolte, Brent H. Shanks, Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical, Green Chemistry, 2014, 16, 2, 548

    CrossRef

  5. 5
    Quan Cao, Wenyuan Liang, Jing Guan, Lei Wang, Qian Qu, Xinzhi Zhang, Xicheng Wang, Xindong Mu, Catalytic synthesis of 2,5-bis-methoxymethylfuran: A promising cetane number improver for diesel, Applied Catalysis A: General, 2014, 481, 49

    CrossRef

  6. 6
    I. Delidovich, K. Leonhard, R. Palkovits, Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering, Energy & Environmental Science, 2014, 7, 9, 2803

    CrossRef

  7. 7
    Jaya Tuteja, Hemant Choudhary, Shun Nishimura, Kohki Ebitani, Direct Synthesis of 1,6-Hexanediol from HMF over a Heterogeneous Pd/ZrP Catalyst using Formic Acid as Hydrogen Source, ChemSusChem, 2014, 7, 1
  8. 8
    Junfang Nie, Haichao Liu, Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on manganese oxide catalysts, Journal of Catalysis, 2014, 316, 57

    CrossRef

  9. 9
    Jinzhu Chen, Guoying Zhao, Limin Chen, Efficient production of 5-hydroxymethylfurfural and alkyl levulinate from biomass carbohydrate using ionic liquid-based polyoxometalate salts, RSC Advances, 2014, 4, 8, 4194

    CrossRef

  10. 10
    Sviatlana Siankevich, Zhaofu Fei, Rosario Scopelliti, Gabor Laurenczy, Sergey Katsyuba, Ning Yan, Paul J. Dyson, Enhanced Conversion of Carbohydrates to the Platform Chemical 5-Hydroxymethylfurfural Using Designer Ionic Liquids, ChemSusChem, 2014, 7, 6
  11. 11
    Valerie Eta, Ikenna Anugwom, Pasi Virtanen, P. Mäki-Arvela, J.-P. Mikkola, Enhanced mass transfer upon switchable ionic liquid mediated wood fractionation, Industrial Crops and Products, 2014, 55, 109

    CrossRef

  12. 12
    Pierre Y. Dapsens, Bright T. Kusema, Cecilia Mondelli, Javier Pérez-Ramírez, Gallium-modified zeolites for the selective conversion of bio-based dihydroxyacetone into C1–C4 alkyl lactates, Journal of Molecular Catalysis A: Chemical, 2014, 388-389, 141

    CrossRef

  13. 13
    Roger A. Sheldon, Green and sustainable manufacture of chemicals from biomass: state of the art, Green Chemistry, 2014, 16, 3, 950

    CrossRef

  14. 14
    Siew Ping Teong, Guangshun Yi, Yugen Zhang, Hydroxymethylfurfural production from bioresources: past, present and future, Green Chemistry, 2014, 16, 4, 2015

    CrossRef

  15. 15
    Francesca D’Anna, Salvatore Marullo, Paola Vitale, Carla Rizzo, Paolo Lo Meo, Renato Noto, Ionic liquid binary mixtures: Promising reaction media for carbohydrate conversion into 5-hydroxymethylfurfural, Applied Catalysis A: General, 2014, 482, 287

    CrossRef

  16. 16
    Amutha Chinnappan, Arvind H. Jadhav, Hern Kim, Wook-Jin Chung, Ionic liquid with metal complexes: An efficient catalyst for selective dehydration of fructose to 5-hydroxymethylfurfural, Chemical Engineering Journal, 2014, 237, 95

    CrossRef

  17. 17
    Yao-Bing Huang, Meng-Yuan Chen, Long Yan, Qing-Xiang Guo, Yao Fu, Nickel–Tungsten Carbide Catalysts for the Production of 2,5-Dimethylfuran from Biomass-Derived Molecules, ChemSusChem, 2014, 7, 4
  18. 18
    Dajiang (D. J.) Liu, Eugene Y.-X. Chen, Organocatalysis in biorefining for biomass conversion and upgrading, Green Chemistry, 2014, 16, 3, 964

    CrossRef

  19. 19
    Mayanka Walia, Upendra Sharma, Vijai K. Agnihotri, Bikram Singh, Silica-supported boric acid assisted conversion of mono- and poly-saccharides to 5-hydroxymethylfurfural in ionic liquid, RSC Advances, 2014, 4, 28, 14414

    CrossRef

  20. 20
    Alexandre Démolis, Nadine Essayem, Franck Rataboul, Synthesis and Applications of Alkyl Levulinates, ACS Sustainable Chemistry & Engineering, 2014, 2, 6, 1338

    CrossRef

  21. 21
    Kristin Schröder, Krzysztof Matyjaszewski, Kevin J. T. Noonan, Robert T. Mathers, Towards sustainable polymer chemistry with homogeneous metal-based catalysts, Green Chemistry, 2014, 16, 4, 1673

    CrossRef

  22. 22
    Ksenia S. Egorova, Valentine P. Ananikov, Toxicity of Ionic Liquids: Eco(cyto)activity as Complicated, but Unavoidable Parameter for Task-Specific Optimization, ChemSusChem, 2014, 7, 2
  23. 23
    Lei Hu, Zhen Wu, Jiaxing Xu, Yong Sun, Lu Lin, Shijie Liu, Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid, Chemical Engineering Journal, 2014, 244, 137

    CrossRef

  24. 24
    Adeline Ranoux, Kristina Djanashvili, Isabel W. C. E. Arends, Ulf Hanefeld, 5-Hydroxymethylfurfural Synthesis from Hexoses Is Autocatalytic, ACS Catalysis, 2013, 3, 4, 760

    CrossRef

  25. 25
    Junfang NIE, Jiahan XIE, Haichao LIU, Activated carbon-supported ruthenium as an efficient catalyst for selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, Chinese Journal of Catalysis, 2013, 34, 5, 871

    CrossRef

  26. 26
    Saikat Dutta, Sudipta De, Basudeb Saha, Advances in biomass transformation to 5-hydroxymethylfurfural and mechanistic aspects, Biomass and Bioenergy, 2013, 55, 355

    CrossRef

  27. 27
    Shunmugavel Saravanamurugan, Anders Riisager, Brønsted acid ionic liquid catalyzed formation of pyruvaldehyde dimethylacetal from triose sugars, Catalysis Today, 2013, 200, 94

    CrossRef

  28. 28
    Daniel H. Lukamto, Peng Wang, Teck-Peng Loh, Catalytic Conversion of Inert Carbohydrates into Platform Chemical 5-Hydroxymethylfurfural Using Arylboronic Acids, Asian Journal of Organic Chemistry, 2013, 2, 11
  29. 29
    Irantzu Sádaba, Yury Y. Gorbanev, Søren Kegnæs, Siva Sankar Reddy Putluru, Rolf W. Berg, Anders Riisager, Catalytic Performance of Zeolite-Supported Vanadia in the Aerobic Oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, ChemCatChem, 2013, 5, 1
  30. 30
    Jaewon Jeong, Churchil A. Antonyraj, Seunghan Shin, Sangyong Kim, Bora Kim, Kwan-Young Lee, Jin Ku Cho, Commercially attractive process for production of 5-hydroxymethyl-2-furfural from high fructose corn syrup, Journal of Industrial and Engineering Chemistry, 2013, 19, 4, 1106

    CrossRef

  31. 31
    Ruliang Liu, Jinzhu Chen, Xing Huang, Limin Chen, Longlong Ma, Xinjun Li, Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials, Green Chemistry, 2013, 15, 10, 2895

    CrossRef

  32. 32
    Takashi Okano, Kun Qiao, Quanxi Bao, Daisuke Tomida, Hisahiro Hagiwara, Chiaki Yokoyama, Dehydration of fructose to 5-hydroxymethylfurfural (HMF) in an aqueous acetonitrile biphasic system in the presence of acidic ionic liquids, Applied Catalysis A: General, 2013, 451, 1

    CrossRef

  33. 33
    Dajiang Liu, Eugene Y.-X. Chen, Diesel and Alkane Fuels From Biomass by Organocatalysis and Metal–Acid Tandem Catalysis, ChemSusChem, 2013, 6, 12
  34. 34
    Young-Byung Yi, Myoung-Gyu Ha, Jin-Woo Lee, Suk-Man Park, Young-Hun Choi, Chung-Han Chung, Direct conversion of citrus peel waste into hydroxymethylfurfural in ionic liquid by mediation of fluorinated metal catalysts, Journal of Industrial and Engineering Chemistry, 2013, 19, 2, 523

    CrossRef

  35. 35
    Sowmiah Subbiah, Svilen P. Simeonov, José M. S. S. Esperança, Luís Paulo N. Rebelo, Carlos A. M. Afonso, Direct transformation of 5-hydroxymethylfurfural to the building blocks 2,5-dihydroxymethylfurfural (DHMF) and 5-hydroxymethyl furanoic acid (HMFA) via Cannizzaro reaction, Green Chemistry, 2013, 15, 10, 2849

    CrossRef

  36. 36
    Young-Byung Yi, Myoung-Gyu Ha, Jin-Woo Lee, Chung-Han Chung, Effect of different halide types on HMF synthesis from kudzu extract in ionic liquid, Journal of Cleaner Production, 2013, 41, 244

    CrossRef

  37. 37
    Junfang Nie, Jiahan Xie, Haichao Liu, Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts, Journal of Catalysis, 2013, 301, 83

    CrossRef

  38. 38
    Levon L. Khemchyan, Elena A. Khokhlova, Marina M. Seitkalieva, Valentine P. Ananikov, Efficient Sustainable Tool for Monitoring Chemical Reactions and Structure Determination in Ionic Liquids by ESI-MS, ChemistryOpen, 2013, 2, 5-6
  39. 39
    Andreas Brust, Frieder W. Lichtenthaler, Facile conversion of glycosyloxymethyl-furfural into γ-keto-carboxylic acid building blocks towards a sustainable chemical industry, Green Chemistry, 2013, 15, 5, 1368

    CrossRef

  40. 40
    Aristides P. Carneiro, Oscar Rodríguez, Eugénia A. Macedo, Fructose and Glucose Dissolution in Ionic Liquids: Solubility and Thermodynamic Modeling, Industrial & Engineering Chemistry Research, 2013, 52, 9, 3424

    CrossRef

  41. 41
    Mingyuan He, Yuhan Sun, Buxing Han, Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling, Angewandte Chemie International Edition, 2013, 52, 37
  42. 42
    Mingyuan He, Yuhan Sun, Buxing Han, Grüne Kohlenstoffwissenschaft: eine wissenschaftliche Grundlage für das Verknüpfen von Verarbeitung, Nutzung und Recycling der Kohlenstoffressourcen, Angewandte Chemie, 2013, 125, 37
  43. 43
    John M. Simmie, Judith Würmel, Harmonising Production, Properties and Environmental Consequences of Liquid Transport Fuels from Biomass—2,5-Dimethylfuran as a Case Study, ChemSusChem, 2013, 6, 1
  44. 44
    Robert-Jan van Putten, Jan C. van der Waal, Ed de Jong, Carolus B. Rasrendra, Hero J. Heeres, Johannes G. de Vries, Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources, Chemical Reviews, 2013, 113, 3, 1499

    CrossRef

  45. 45
    I. V. Zibareva, V. N. Parmon, Identification of “hot spots” of the science of catalysis: bibliometric and thematic analysis of nowaday reviews and monographs, Russian Chemical Bulletin, 2013, 62, 10, 2266

    CrossRef

  46. 46
    Svilen P. Simeonov, Jaime A. S. Coelho, Carlos A. M. Afonso, Integrated Chemo-Enzymatic Production of 5-Hydroxymethylfurfural from Glucose, ChemSusChem, 2013, 6, 6
  47. 47
    Filip V. Toukach, Valentine P. Ananikov, Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations, Chemical Society Reviews, 2013, 42, 21, 8376

    CrossRef

  48. 48
    Andreas J. Kunov-Kruse, Anders Riisager, Shunmugavel Saravanamurugan, Rolf W. Berg, Steffen B. Kristensen, Rasmus Fehrmann, Revisiting the Brønsted acid catalysed hydrolysis kinetics of polymeric carbohydrates in ionic liquids by in situ ATR-FTIR spectroscopy, Green Chemistry, 2013, 15, 10, 2843

    CrossRef

  49. 49
    Daan S. van Es, Rigid Biobased Building Blocks, Journal of Renewable Materials, 2013, 1, 1, 61

    CrossRef

  50. 50
    Eric F. Dunn, Dajiang (D.J.) Liu, Eugene Y.-X. Chen, Role of N-heterocyclic carbenes in glucose conversion into HMF by Cr catalysts in ionic liquids, Applied Catalysis A: General, 2013, 460-461, 1

    CrossRef

  51. 51
    Fei Liu, Maïté Audemar, Karine De Oliveira Vigier, Damien Cartigny, Jean-Marc Clacens, Margarida F. Costa Gomes, Agilio A. H. Pádua, Floryan De Campo, François Jérôme, Selectivity enhancement in the aqueous acid-catalyzed conversion of glucose to 5-hydroxymethylfurfural induced by choline chloride, Green Chemistry, 2013, 15, 11, 3205

    CrossRef

  52. 52
    Deepali A. Kotadia, Saurabh S. Soni, Symmetrical and unsymmetrical Brønsted acidic ionic liquids for the effective conversion of fructose to 5-hydroxymethyl furfural, Catalysis Science & Technology, 2013, 3, 2, 469

    CrossRef

  53. 53
    Hirokazu Kobayashi, Atsushi Fukuoka, Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass, Green Chemistry, 2013, 15, 7, 1740

    CrossRef

  54. 54
    Guo Tian, Xinli Tong, Yi Cheng, Song Xue, Tin-catalyzed efficient conversion of carbohydrates for the production of 5-hydroxymethylfurfural in the presence of quaternary ammonium salts, Carbohydrate Research, 2013, 370, 33

    CrossRef

  55. 55
    Lei Hu, Yong Sun, Lu Lin, Shijie Liu, 12-Tungstophosphoric acid/boric acid as synergetic catalysts for the conversion of glucose into 5-hydroxymethylfurfural in ionic liquid, Biomass and Bioenergy, 2012, 47, 289

    CrossRef

  56. 56
    Rodrigo Lopes de Souza, Hao Yu, Franck Rataboul, Nadine Essayem, 5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System, Challenges, 2012, 3, 2, 212

    CrossRef

  57. 57
    Saikat Dutta, Sudipta De, Basudeb Saha, A Brief Summary of the Synthesis of Polyester Building-Block Chemicals and Biofuels from 5-Hydroxymethylfurfural, ChemPlusChem, 2012, 77, 4
  58. 58
    Zhen-Zhen Yang, Jin Deng, Tao Pan, Qing-Xiang Guo, Yao Fu, A one-pot approach for conversion of fructose to 2,5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2, Green Chemistry, 2012, 14, 11, 2986

    CrossRef

  59. 59
    Xinhua Qi, Haixin Guo, Luyang Li, Richard L. Smith, Acid-Catalyzed Dehydration of Fructose into 5-Hydroxymethylfurfural by Cellulose-Derived Amorphous Carbon, ChemSusChem, 2012, 5, 11
  60. 60
    Saikat Dutta, Sudipta De, Basudeb Saha, Md. Imteyaz Alam, Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels, Catalysis Science & Technology, 2012, 2, 10, 2025

    CrossRef

  61. 61
    Tim Ståhlberg, Ester Eyjólfsdóttir, Yury Y. Gorbanev, Irantzu Sádaba, Anders Riisager, Aerobic Oxidation of 5-(Hydroxymethyl)furfural in Ionic Liquids with Solid Ruthenium Hydroxide Catalysts, Catalysis Letters, 2012, 142, 9, 1089

    CrossRef

  62. 62
    Svilen P. Simeonov , Jaime A. S. Coelho , Carlos A. M. Afonso , An Integrated Approach for the Production and Isolation of 5-Hydroxymethylfurfural from Carbohydrates, ChemSusChem, 2012, 5, 8
  63. 63
    Lei Hu, Geng Zhao, Weiwei Hao, Xing Tang, Yong Sun, Lu Lin, Shijie Liu, Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes, RSC Advances, 2012, 2, 30, 11184

    CrossRef

  64. 64
    Lei Hu, Yong Sun, Lu Lin, Shijie Liu, Catalytic conversion of glucose into 5-hydroxymethylfurfural using double catalysts in ionic liquid, Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 5, 718

    CrossRef

  65. 65
    Zehui Zhang, Bing Liu, Zongbao (Kent) Zhao, Conversion of fructose into 5-HMF catalyzed by GeCl4 in DMSO and [Bmim]Cl system at room temperature, Carbohydrate Polymers, 2012, 88, 3, 891

    CrossRef

  66. 66
    Klaus Beckerle, Jun Okuda, Conversion of glucose and cellobiose into 5-hydroxymethylfurfural (HMF) by rare earth metal salts in N,N′-dimethylacetamide (DMA), Journal of Molecular Catalysis A: Chemical, 2012, 356, 158

    CrossRef

  67. 67
    Margarida M. Antunes, Sérgio Lima, Martyn Pillinger, Anabela A. Valente, Coupling of Nanoporous Chromium, Aluminium-Containing Silicates with an Ionic Liquid for the Transformation of Glucose into 5-(Hydroxymethyl)-2-furaldehyde, Molecules, 2012, 17, 12, 3690

    CrossRef

  68. 68
    Viviana Heguaburu, Jaime Franco, Luis Reina, Carlos Tabarez, Guillermo Moyna, Patrick Moyna, Dehydration of carbohydrates to 2-furaldehydes in ionic liquids by catalysis with ion exchange resins, Catalysis Communications, 2012, 27, 88

    CrossRef

  69. 69
    Chunyan Shi, Yuling Zhao, Jiayu Xin, Jinquan Wang, Xingmei Lu, Xiangping Zhang, Suojiang Zhang, Effects of cations and anions of ionic liquids on the production of 5-hydroxymethylfurfural from fructose, Chemical Communications, 2012, 48, 34, 4103

    CrossRef

  70. 70
    Chao Wang, Litang Fu, Xinli Tong, Qiwu Yang, Wenqin Zhang, Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions, Carbohydrate Research, 2012, 347, 1, 182

    CrossRef

  71. 71
    Lei Hu, Yong Sun, Lu Lin, Efficient Conversion of Glucose into 5-Hydroxymethylfurfural by Chromium(III) Chloride in Inexpensive Ionic Liquid, Industrial & Engineering Chemistry Research, 2012, 51, 3, 1099

    CrossRef

  72. 72
    Juan Carlos Serrano-Ruiz, Juan M. Campelo, Matteo Francavilla, Antonio A. Romero, Rafael Luque, Carmen Menéndez-Vázquez, Ana B. García, Eduardo J. García-Suárez, Efficient microwave-assisted production of furfural from C5 sugars in aqueous media catalysed by Brönsted acidic ionic liquids, Catalysis Science & Technology, 2012, 2, 9, 1828

    CrossRef

  73. 73
    Zuojun Wei, Yingxin Liu, Dilantha Thushara, Qilong Ren, Entrainer-intensified vacuum reactive distillation process for the separation of 5-hydroxylmethylfurfural from the dehydration of carbohydrates catalyzed by a metal salt–ionic liquid, Green Chemistry, 2012, 14, 4, 1220

    CrossRef

  74. 74
    Tim Ståhlberg, John M. Woodley, Anders Riisager, Enzymatic isomerization of glucose and xylose in ionic liquids, Catalysis Science & Technology, 2012, 2, 2, 291

    CrossRef

  75. 75
    Yu-Nong Li, Jin-Quan Wang, Liang-Nian He, Zhen-Zhen Yang, An-Hua Liu, Bing Yu, Chao-Ran Luan, Experimental and theoretical studies on imidazolium ionic liquid-promoted conversion of fructose to 5-hydroxymethylfurfural, Green Chemistry, 2012, 14, 10, 2752

    CrossRef

  76. 76
    Young-Byung Yi, Myoung-Gyu Ha, Jin-Woo Lee, Chung-Han Chung, New role of chromium fluoride: Its catalytic action on the synthesis of hydroxymethylfurfural in ionic liquid using raw plant biomass and characterization of biomass hydrolysis, Chemical Engineering Journal, 2012, 180, 370

    CrossRef

  77. 77
    Evgeny A. Pidko, Volkan Degirmenci, Emiel J. M. Hensen, On the Mechanism of Lewis Acid Catalyzed Glucose Transformations in Ionic Liquids, ChemCatChem, 2012, 4, 9
  78. 78
    Thomas S. Hansen, Katalin Barta, Paul T. Anastas, Peter C. Ford, Anders Riisager, One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol, Green Chemistry, 2012, 14, 9, 2457

    CrossRef

  79. 79
    Shunmugavel Saravanamurugan, Anders Riisager, Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides, Catalysis Communications, 2012, 17, 71

    CrossRef

  80. 80
    Md. Imteyaz Alam, Sudipta De, Saikat Dutta, Basudeb Saha, Solid-acid and ionic-liquid catalyzed one-pot transformation of biorenewable substrates into a platform chemical and a promising biofuel, RSC Advances, 2012, 2, 17, 6890

    CrossRef

  81. 81
    Aristides P. Carneiro, Oscar Rodríguez, Eugénia A. Macedo, Solubility of xylitol and sorbitol in ionic liquids – Experimental data and modeling, The Journal of Chemical Thermodynamics, 2012, 55, 184

    CrossRef

  82. 82
    Olivier Monasson, Gwenaëlle Sizun-Thomé, Nadège Lubin-Germain, Jacques Uziel, Jacques Augé, Straightforward glycosylation of alcohols and amino acids mediated by ionic liquid, Carbohydrate Research, 2012, 352, 202

    CrossRef

  83. 83
    Xinhua Qi, Masaru Watanabe, Taku M. Aida, Richard L. Smith, Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid–water mixtures, Bioresource Technology, 2012, 109, 224

    CrossRef

  84. 84
    Elena A. Khokhlova, Vadim V. Kachala, Valentine P. Ananikov, The First Molecular Level Monitoring of Carbohydrate Conversion to 5-Hydroxymethylfurfural in Ionic Liquids. B2O3—An Efficient Dual-Function Metal-Free Promoter for Environmentally Benign Applications, ChemSusChem, 2012, 5, 4
  85. 85
    Hemayat Shekaari, Amir Kazempour, Thermodynamic properties of d-glucose in aqueous 1-hexyl-3-methylimidazolium bromide solutions at 298.15K, Fluid Phase Equilibria, 2012, 336, 122

    CrossRef

  86. 86
    V.G. Komvokis, S. Karakoulia, E.F. Iliopoulou, M.C. Papapetrou, I.A. Vasalos, A.A. Lappas, K.S. Triantafyllidis, Upgrading of Fischer–Tropsch synthesis bio-waxes via catalytic cracking: Effect of acidity, porosity and metal modification of zeolitic and mesoporous aluminosilicate catalysts, Catalysis Today, 2012, 196, 1, 42

    CrossRef

  87. 87
    Shunmugavel Saravanamurugan, Olivier Nguyen Van Buu, Anders Riisager, Conversion of Mono- and Disaccharides to Ethyl Levulinate and Ethyl Pyranoside with Sulfonic Acid-Functionalized Ionic Liquids, ChemSusChem, 2011, 4, 6
  88. 88
    Sérgio Lima, Margarida M. Antunes, Martyn Pillinger, Anabela A. Valente, Ionic Liquids as Tools for the Acid-Catalyzed Hydrolysis/Dehydration of Saccharides to Furanic Aldehydes, ChemCatChem, 2011, 3, 11
  89. 89
    Sudipta De, Saikat Dutta, Basudeb Saha, Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium chloride catalyst in water, Green Chemistry, 2011, 13, 10, 2859

    CrossRef

  90. 90
    Devalina Ray, Neha Mittal, Wook-Jin Chung, Phosphorous pentoxide mediated synthesis of 5-HMF in ionic liquid at low temperature, Carbohydrate Research, 2011, 346, 14, 2145

    CrossRef

  91. 91
    Sudipta De, Saikat Dutta, Astam K. Patra, Asim Bhaumik, Basudeb Saha, Self-assembly of mesoporous TiO2 nanospheres via aspartic acid templating pathway and its catalytic application for 5-hydroxymethyl-furfural synthesis, Journal of Materials Chemistry, 2011, 21, 43, 17505

    CrossRef

  92. 92
    Linke Lai, Yugen Zhang, The Production of 5-Hydroxymethylfurfural from Fructose in Isopropyl Alcohol: A Green and Efficient System, ChemSusChem, 2011, 4, 12
  93. 93
    Haibo Xie, Wujun Liu, Ian Beadham, Nicholas Gathergood, Biorefinery with Ionic Liquids,