• biomass;
  • carbonation;
  • fatty acids;
  • heterogeneous catalysis;
  • sulfonation


A novel bagasse-based solid acid catalyst was successfully prepared through sulfonation of incompletely carbonized bagasse. A range of conditions for producing the catalyst were investigated, and the optimized catalyst, produced under carbonization at 648 K for 0.5 h and sulfonation at 423 K for 15 h, showed excellent catalytic activity and resulted in around 95 % yield of methyl oleate. Its activity was not only substantially greater than that of niobic acid and Amberlyst-15, but also comparable to or superior to that of catalysts made from pure starch or glucose, respectively. Additionally, the bagasse-derived catalyst could be repeatedly employed for at least eight cycles and still retained around 90 % of its original activity, exhibiting excellent operational stability. Furthermore, the catalyst efficiently converted waste cooking oils with 38.6 wt % free fatty acids into biodiesel and afforded a high yield of about 93.8 % within 12 h. These results clearly show that the bagasse-derived catalyst is economic, eco-friendly, and promising for biodiesel production from low-cost feedstocks and may find wide applications.