Lipase-Catalyzed (Trans)esterification of 5-Hydroxy- methylfurfural and Separation from HMF Esters using Deep-Eutectic Solvents

Authors

  • Monika Krystof,

    1. Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany), Fax: (+49) 241-8022177
    Search for more papers by this author
  • Dr. María Pérez-Sánchez,

    1. Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany), Fax: (+49) 241-8022177
    Search for more papers by this author
  • Dr. Pablo Domínguez de María

    Corresponding author
    1. Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany), Fax: (+49) 241-8022177
    • Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany), Fax: (+49) 241-8022177
    Search for more papers by this author

Abstract

5-Hydroxymethylfurfural (HMF) is a valuable biomass-derived building block. Among possible HMF valorization products, a broad range of HMF esters can be synthesized. These HMF esters have found some promising applications, such as monomers, fuels, additives, surfactants, and fungicides, and thus several catalytic approaches for HMF (trans)esterifications have been reported. The intrinsic reactivity of HMF is challenging, forcing the use of mild reaction conditions to avoid by-product formation. This paper explores the lipase-catalyzed (trans)esterification of HMF with different acyl donors (carboxylic acids and methyl- and ethyl esters) mostly in solvent-free conditions. The results demonstrate that lipases may be promising alternatives for the synthesis of HMF esters—with high productivities and reactions at high substrate loadings—provided that robust systems for lipase immobilization are applied to assure an adequate reusability of the enzymes. Once (trans)esterifications have been conducted, the separation of unreacted HMF and HMF esters is performed by using deep-eutectic solvents (DES) as separation agents. DES are able to dissolve hydrogen-bond donors (e.g., HMF), whereas non-hydrogen-bond donors (in this case HMF esters) form a second phase. By using this approach, high ester purities (>99 %) and efficiencies (up to >90 % HMF ester recovery) in separations were obtained by using choline chloride-based DES.

Ancillary