Energetic Aqueous Rechargeable Sodium-Ion Battery Based on Na2CuFe(CN)6–NaTi2(PO4)3 Intercalation Chemistry



Aqueous rechargeable sodium-ion batteries have the potential to meet growing demand for grid-scale electric energy storage because of the widespread availability and low cost of sodium resources. In this study, we synthesized a Na-rich copper hexacyanoferrate(II) Na2CuFe(CN)6 as a high potential cathode and used NaTi2(PO4)3 as a Na-deficient anode to assemble an aqueous sodium ion battery. This battery works very well with a high average discharge voltage of 1.4 V, a specific energy of 48 Wh kg−1, and an excellent high-rate cycle stability with approximately 90 % capacity retention over 1000 cycles, achieving a new record in the electrochemical performance of aqueous Na-ion batteries. Moreover, all the anode, cathode, and electrolyte materials are low cost and naturally abundant and are affordable for widespread applications.