Get access
Advertisement

Ionic-Liquid-Assisted Synthesis of Nanostructured and Carbon-Coated Li3V2(PO4)3 for High-Power Electrochemical Storage Devices

Authors

  • Xiaofei Zhang,

    1. Westfälische Wilhelms Universität, Institut für Physikalische Chemie-MEET, Corrensstrasse 28/30, 48149 Münster (Germany)
    Search for more papers by this author
  • Dr. Nils Böckenfeld,

    1. Westfälische Wilhelms Universität, Institut für Physikalische Chemie-MEET, Corrensstrasse 28/30, 48149 Münster (Germany)
    Search for more papers by this author
  • Dr. Frank Berkemeier,

    1. Westfälische Wilhelms-Universität, Institut für Materialphysik, Wilhelm-Klemm-Strasse 10, 48149 Münster (Germany)
    Search for more papers by this author
  • Dr. Andrea Balducci

    Corresponding author
    1. Westfälische Wilhelms Universität, Institut für Physikalische Chemie-MEET, Corrensstrasse 28/30, 48149 Münster (Germany)
    • Westfälische Wilhelms Universität, Institut für Physikalische Chemie-MEET, Corrensstrasse 28/30, 48149 Münster (Germany)===

    Search for more papers by this author

Abstract

Carbon-coated Li3V2(PO4)3 (LVP) displaying nanostructured morphology can be easily prepared by using ionic-liquid-assisted sol–gel synthesis. The selection of highly viscous and thermally stable ionic liquids might promote the formation of nanostructures during the sol–gel synthesis. The presence of these structures shortens the diffusion paths and enlarges the contact area between the active material and the electrolyte; this leads to a significant improvement in lithium-ion diffusion. At the same time, the use of ionic liquids has a positive influence on the coating of the LVP particles, which improves the electronic conductivity of this material; this leads to enhanced charge-transfer properties. At a high current density of 40 C, the LVP/N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide material delivered a reversible capacity of approximately 100 mA h g−1, and approximately 99 % of the initial capacity value was retained even after 100 cycles at 50 C. The excellent high rate and cycling stability performance make Li3V2(PO4)3 prepared by ionic-liquid-assisted sol–gel synthesis a very promising cathode material for high-power electrochemical storage devices.

Get access to the full text of this article

Ancillary