Experiments and Simulations of Particle Flows in a Magnetized Dust Torus



An overview is given of the confinement and dynamical phenomena observed in experiments and simulations of magnetized dust tori. Due to the presence of gravity, a strongly inhomogeneous velocity field is found along the circumference of the torus. The simulations show that the dust flow, which is unsheared and nearly incompressible, exhibits a distinct shell structure, which can be understood by rapid frictional cooling and strong Coulomb coupling. At lower frictional damping, the symmetry of the flow can be spontaneously broken, leading to a region of strong velocity shear and excitation of Kelvin-Helmholtz instabilities. New experimental evidence of counterflows is found (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)