Iridium CVD using di-µ-Chloro-tetrakis(trifluorophosphine)- diiridium (I) Precursor, in-situ generated from Chlorotetrakis(trifluorophosphine)iridium

Authors

  • Phong Dinh Tran,

    Corresponding author
    1. Laboratoire de Chimie et Biologie des Métaux, UMR 5249, CEA Grenoble, iRTSV/LCBM Bat. K', 17 avenue des Martyrs, 38054 Grenoble cedex 9 (France)
    • Laboratoire de Chimie et Biologie des Métaux, UMR 5249, CEA Grenoble, iRTSV/LCBM Bat. K', 17 avenue des Martyrs, 38054 Grenoble cedex 9 (France).
    Search for more papers by this author
  • Marie-Geneviève Barthes-Labrousse,

    1. Institut de Chimie et des Matériaux Paris-Est (CNRS UMR 7182) 2-8 rue Henri Dunant, 94320 Thiais (France)
    Search for more papers by this author
  • Pascal Doppelt

    1. Institut de Chimie et des Matériaux Paris-Est (CNRS UMR 7182) 2-8 rue Henri Dunant, 94320 Thiais (France)
    Search for more papers by this author

  • We gratefully acknowledge P. Viel and X. T. Le from the Chemistry of Surfaces and Interfaces Group, SPCSI, IRAMIS, CEA, Gif-sur-Yvette, France for their fruitful discussions and help in XPS analyses.

Abstract

The CVD of iridium thin films using di-µ-chloro-tetrakis(trifluorophosphine)diiridium(I) as the precursor is presented. This inorganic, volatile, and unstable precursor is supplied in-situ into the CVD reactor by the decomposition reaction of chlorotetrakis(trifluorophosphine)iridium, a more air-stable but more thermally sensitive compound. By using this carbon- and oxygen-free precursor, condensed, conformal, and highly pure iridium metallic films are grown on SiO2/Si and Ta/TaN substrates at growth temperatures as low as 200 °C. The dependence of the deposition process, and characteristics of iridium-deposited films such as morphology, microstructure, and chemical composition, on deposition temperature and the nature of the carrier gas (N2 or O2) are also investigated.

Ancillary