• ALD process, Mass transport, Thermodynamics, Thin film conformality, Trough silicon vias


There is a growing interest in producing tantalum nitride (TaN) thin films for various industrial applications. For example, in microelectronics, the development of IC technology is driven by the need to increase both performance and functionality while reducing power and cost. This goal can be achieved by several solutions among which the introduction of architecture enhancements such as 3D integration. The most challenging step is the deposition of a conformal, continuous, and adherent diffusion barrier. In this work, atomic layer deposition (ALD) of TaN thin films is explored using the combination between the thermodynamical behavior of the precursor, mass transfer in the reactor, and the operating conditions. TaN thin film deposition on very complex shape substrates, such as nanodots, TSV, silicon nanowires, and carbon nanotubes, has been evaluated.