SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Shapiro HM. Practical flow cytometry, 3rd edition. New York: Wiley-Liss; 1994.
  • 2
    Chisholm SW, Olsen RJ, Zettler ER, Goericke R, Waterbury J, Welschmeyer NA. A novel free-living prochlorohyte abundant in the oceanic euphotic zone. Nature 1988; 334: 340343.
  • 3
    Olson RJ, Chisholm SW, Zettler ER, Armbrust EV. Pigments, size and distribution of synechococcus in the North Atlantic and Pacific Oceans. Limnol Oceanography 1990; 35: 4558.
  • 4
    Li WK, Dickie PM, Irwin BD, Wood AM. Biomass of bacteria, cyanobacteria, prochlorophytes and photosynthetic eukaryotes in the Sargasso sea. Deep-Sea Res 1992; 39: 501519.
  • 5
    Olson RJ, Zettler ER, Anderson OK. Discrimination of eukaryotic phytoplankton cell types from light scatter and autofluorescence properties measured by flow cytometry. Cytometry 1989; 10: 636646.
  • 6
    Demers S, Kim J, Legendre P, Legendre L. Analysing multivariate flow cytometric data in aquatic sciences. Cytometry 1992; 13: 291299.
  • 7
    Boddy L, Wilkins MF, Morris CW. Pattern recognition in flow cytometry. Cytometry 2001; 44: 195209.
  • 8
    Carr MR, Tarran GA, Burkill PH. Discrimination of marine phytoplankton species through the statistical analysis of their flow cytometric signatures. J Plankton Res 1996; 18: 12251238.
  • 9
    Tou JT, Gonzalez RC. Pattern recognition principles. London: Addison-Wesley; 1974.
  • 10
    McLachlan GJ. Discriminant analysis and statistical pattern recognition. New York: Wiley; 1992.
  • 11
    Fix E, Hodges JL. Discriminatory analysis, nonparametric estimation: consistency properties. Technical Report No. 4, Project no. 21-49-004, USAF School of Aviation Medicine, Randolph Field, Texas; 1951. (Reprinted in Int Stat Rev 1989;57:238–247.)
  • 12
    Silverman BW. Density estimation for statistics and data analysis. New York: Chapman and Hall; 1986.
  • 13
    Scott DW. Multivariate density estimation. New York: Wiley; 1992.
  • 14
    Bowman AW. An alternative method of cross-validation for the smoothing of density estimates. Biometrika 1984; 71: 353360.
  • 15
    Sheather SJ, Jones MC. A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc [B] 1991; 53: 683690.
  • 16
    Brewer MJ. A Bayesian model for local smoothing in kernel density estimation. Stat Comput 2000; 10: 295306.
  • 17
    Terrel GR., Scott DW. Variable kernel density estimation. Ann Stat 1992; 20: 12361265.
  • 18
    Cencov NN. Evaluation of an unknown distribution density from observations. Doklady 1962; 3: 15591562.
  • 19
    Doukhan P, Leon J. Squared error of density estimators using orthogonal projection. Comptes Rendues Acad Paris [A] 1990; 310: 424430.
  • 20
    Johnstone IM, Kerkyacharian G, Picard D. Estimation of a probability density using the wavelet method. Comptes Rendues Acad Paris [A] 1992; 315: 211216.
  • 21
    Donoho DL, Johnstone IM, Kerkyacharian G, Picard D. Density estimation by wavelet thresholding. Ann Stat 1996; 24: 508539.
  • 22
    Tribouley K. Practical estimation of multivariate densities using wavelet methods. Stat Neerlandica 1995; 49: 4162.
  • 23
    Vannucci M. Nonparametric density estimation using wavelets. Technical Report DP95-26, Duke University. Revised 1998.
  • 24
    Abramovich F, Bailey TC, Sapatinas T. Wavelet analysis and its statistical applications. J R Stat Soc [D] 2000; 49: 129.
  • 25
    Daubechies I. Orthogonal basis of compactly supported wavelets. Commun Pure Appl Math 1988; 41: 909996.
  • 26
    Pinheiro A, Vidakovic B. Estimating the square root of a density via compactly supported wavelets. Comput Stat Data Anal 1997; 25: 399415.
  • 27
    Scott DW. Using computer-binned data for density estimation. In: EddyWF, editor. Computer science and statistics: proceedings of the 13th symposium on the interface. New York: Springer-Verlag; 1997. p 292294.
  • 28
    Jones MC. Discretized and interpolated kernel density estimates. J Am Stat Assoc 1989; 84: 733741.
  • 29
    Antoniadis A, Gregoire G, Nason GP. Density and hazard rate estimation for right censored data using wavelet methods. J R Stat Soc [B] 1999; 61: 6384.
  • 30
    Nelder JA, Mead R. A simplex method for function minimisation. Comput J 1965; 7: 308313.
  • 31
    Hermans J, Habbema JDF, Kasanmoentalib TKD, Raatgever JW. Manual for the ALLOC80 discriminant analysis program. Department of Medical Statistics, University of Leiden; 1982.
  • 32
    Burkill PH. Analytical flow cytometry and its application to marine microbial ecology. In: SleighMA, editor. Microbes and the sea. Chichester: Ellis Horwood; 1987. p 139166.
  • 33
    Boddy L, Morris CW, Wilkins MF, Tarran GA, Burkill PH. Neural network analysis of flow cytometric data for 40 marine phytoplankton. Cytometry 1994; 15: 283293.
  • 34
    Beckman RJ, Salzman GC, Stewart CC. Classification and regression trees for bone marrow immunophenotyping. Cytometry 1995; 20: 210217.
  • 35
    Wilkins MF, Boddy L, Morris CW, Jonker RR. A comparison of some neural and non-neural methods for identification of phytoplankton from flow cytometry data. CABIOS 1996; 12: 918.
  • 36
    Boddy L, Morris CW, Wilkins MF, Al-Haddad L, Tarran GA, Jonker RR, Burkill PH. Identification of 72 phytoplankton species by radial basis function neural network analysis of flow cytometric data. Marine Ecol Series 2000; 195: 4759.