• 1
    Belien JAM, van Ginkel AHM, Tekola P, Ploeger LS, Poulin NM, Baak JPA, van Diest PJ. Confocal DNA cytometry: a contour-based segmentation algorithm for automated three-dimensional image segmentation. Cytometry 2002; 49: 1221.
  • 2
    Czader M, Liljeborg A, Auer G, Porwit A. Confocal 3-dimensional DNA image cytometry in thick tissue sections. Cytometry 1996; 25: 246253.
  • 3
    Lockett SJ, Sudar D, Thompson CT, Pinkel D, Gray JW. Efficient, interactive, three-dimensional segmentation of cell nuclei in thick tissue sections. Cytometry 1998; 31: 275286.
  • 4
    Rodenacker K, Aubele M, Hutzler P, Adiga U. Groping for quantitative digital 3-D image analysis: an approach to quantitative fluorescence in situ hybridization in thick tissue sections of prostate carcinoma. Anal Cell Pathol 1997; 15: 1929.
  • 5
    Rigaut JP, Vassy J, Herlin P, Duigou F, Masson E, Briane D, Foucrier J, Carvajal-Gonzalez S, Downs AM, Mandard AM. Three dimensional DNA image cytometry by confocal scanning laser microscopy in thick tissue blocks. Cytometry 1991; 12: 511524.
  • 6
    Ancin H, Roysam B, Dufresne TE, Chesnut MM, Ridder GM, Szarowski DH, Turner JN. Advances in automated 3-D image analysis of cell populations imaged by confocal microscopy. Cytometry 1996; 25: 221234.
  • 7
    Adiga U, Chaudhuri BB. An efficient method based on watershed and rule-based merging for segmentation of 3-D histo-pathological images. Pattern Recognition 2001; 34: 14491458.
  • 8
    Tekola P, Baak JPA, van Ginkel AHM, Belien JAM, van Diest PJ, Broeckaert MAM. Three-dimensional confocal laser scanning DNA ploidy cytometry in thick histological sections. J Pathol 1996; 180: 214222.
  • 9
    Solorzano CO, Rodriguez EG, Jones A, Pinkel D, Gray JW, Sudar D, Lockett SV. Segmentation of confocal microscope images of cell nuclei in thick tissue sections, J Microscopy 1999; 193: 212226.
  • 10
    Sarti A, Solorzano CO, Lockett SJ, Malladi R. A geometric model for 3-D confocal image analysis. IEEE Trans Biomed Eng 2000; 47: 16001609.
  • 11
    Lockett SJ, O'Rand M, Rinehart C, Kaufman DG, Herman B, Jacobson K. Automated fluorescence image cytometry: DNA quantification and detection of chlamydial infections. Anal Quant Cytol 1991; 13: 2744.
  • 12
    Glasbey CA. An analysis of histogram-based thresholding algorithms. CVGIP: Graphical Models and Image Processing 1993; 55: 532537.
  • 13
    MacAulay C, Palcic B. A comparison of some quick and simple threshold selection methods for stained cells. Anal Quant Cytol Histol 1988; 10: 134138.
  • 14
    Haralick RM, Shapiro LG. Image segmentation techniques. CVGIP 1985; 29: 100133.
  • 15
    Zucker S. Region-growing: childhood and adolescence. Comput Graphics Image Process 1976; 5: 382399.
  • 16
    Kohler R. A segmentation system based on thresholding. Comput Graphics Image Process 1981; 15: 319338.
  • 17
    Visscher DW, Zarbo RJ, Greenawald KA, Crissman JD. Prognostic significance of morphological parameters and flow cytometric DNA analysis in carcinoma of the breast. Pathol Annu 1990; 25: 171210.
  • 18
    Wolf G. Use of global information and a priori knowledge for segmentation of objects: algorithms and applications. Proceedings of the SPIE 1992; 1660: 397408.
  • 19
    Ahrens P, Schleicher A, Zilles K, Werner L. Image analysis of Nissl-stained neuronal perikarya in the primary visual cortex of the rat: automatic detection and segmentation of neuronal profiles with nuclei and nucleoli. J Microscopy 1990; 157: 349365.
  • 20
    Garbay C, Chassery JM, Brugal G. An interactive region-growing process for cell image segmentation based on local color similarity and global shape criteria. Anal Quant Cytol Histol 1986; 8: 2534.
  • 21
    Lockett SJ, Herman B. Automatic detection of clustered, fluorescent-stained nuclei by digital image-based cytometry. Cytometry 1994; 17: 112.
  • 22
    Meyer F, Beucher S. Morphological segmentation. J Vis Commun Image Representation 1990; 1: 2146.
  • 23
    Beucher S. Watershed: hierarchical segmentation and waterfall algorithm. In: SerraJ, SoilleP, editors. Mathematical morphology and its applications to image processing. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1994. p 6976.
  • 25
    Beucher S. The watershed transformation applied to image segmentation. Scanning Microsc 1992; 6: 299314.
  • 25
    Beucher S, Meyer F. The morphological approach to segmentation: the watershed transformation. In: Mathematical morphology in image processing. New York: Marcel Dekker Inc.; 1993.
  • 26
    Vincent L. Morphological gray scale recognition in image analysis: applications and efficient algorithms. IEEE Trans Image Process 1993; 2: 176201.
  • 27
    Cootes TF, Taylor CJ, Cooper DH, Graham J. Active shape models: their training and application. Comput Vis Image Underst 1995; 61: 3859.
  • 28
    Najman L, Schmitt M. Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 1996; 18: 11631173.
  • 29
    Digabel H, Lantuejoul C. Iterative algorithms. ChermantJL, editor. Stuttgart, Germany: Riederer Verlag; 1987. p 8599.
  • 30
    Beucher S. Watersheds of functions and picture segmentation. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Paris; 1982. p 1928–1931.
  • 31
    Maisonneuve F. Sue le partage des eaux. Tech Report CMM. Paris: School of Mines; 1982.
  • 32
    Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 1991; 13: 583598.
  • 33
    Sijbers J, Scheunders P, Verhoye M, van der Linden A, van Dyck D, Raman E. Watershed-based segmentation of 3D MR data for volume quantization. Magn Reson Imaging 1997; 15: 679688.
  • 34
    Higgins WE, Ojard EJ. Interactive morphological watershed analysis for 3D medial images. Comput Med Imaging Graph 1993; 17: 387395.
  • 35
    Garbay C. Image structure representation and processing: a discussion of some segmentation methods in cytology. IEEE Transactions on Pattern Analysis and Machine Intelligence 1986; 8: 140146.
  • 36
    Malpica N, Solorzano CO, Vaquero JJ, Santos A, Vallcorba I, Garcia-Sagredo JM, Pozo F. Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 1997; 28: 289297.
  • 37
    Theodoridis S, Koutroumbas K. Pattern recognition. San Diego: Academic Press; 1999. 625 p.
  • 38
    Harner EJ, Slater PB. Identifying medical regions using hierarchical clustering. Soc Sci Med 1980; 14D: 310.
  • 39
    Filzmoster P, Baumgarner R, Moser E. A hierarchical clustering method for analyzing functional MR images. Magn Reson Imaging 1999; 17: 817826.
  • 40
    Roysam B, Ancin H, Bhattacharjya AK, Chisti MA, Seegal R, Turner JN. Algorithms for automated characterization of cell populations in thick specimens from 3-D confocal fluorescence microscopy data. J Microscopy 1994; 173: 115126.
  • 41
    Mackin RW, Roysam B, Holmes TJ, Turner JN. Automated three-dimensional image analysis of thick and overlapped clusters in cytologic preparations: application to cytologic smears. Anal Quant Cytol Histol 1993; 15: 405417.
  • 42
    Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979; SMC-9: 6266.
  • 43
    Hader DP. Image analysis: methods and applications. Boca Raton, FL: CRC Press; 2001. 463 p.
  • 44
    Vemuri BC, Radisavljevic A. Multiresolution stochastic hybrid shape models with fractal priors. ACM Transactions on Graphics 1994; 13: 177200.
  • 45
    Staib LH, Duncan JS. Model-based deformable surface finding for medical images. IEEE Trans Med Imaging 1996; 15: 112.
  • 46
    McInerney T, Terzopoulos D. Deformable models in medical image analysis: a survey. Med Image Anal 1996; 1: 91108.
  • 47
    Borgefors G. Distance transformations in digital images. Comput Vis Graphics Image Proc 1986; 34: 344371.
  • 48
    Haralick RM, Shapiro LG. Computer and robot vision. New York: Addison-Wesley; 1992.
  • 49
    Pawley JB. Handbook of biological confocal microscopy. New York: Plenum Press; 1995. 632 p.
  • 50
    Castleman K. Digital Image Processing. Upper Saddle River: NJ. Prentice-Hall; 1996. 667 p.
  • 51
    Zucker S, Hummel RA. A three dimensional edge operator. IEEE Trans Pattern Anal Mach Intell 1981; 3: 324331.
  • 52
    Ancin H. 3-D image processing algorithms for automated cell counting, measurement and population analysis. PhD thesis. Troy, NY: Rensselaer Polytechnic Institute; 1995.
  • 53
    Parker JR. Practical computer vision using C. New York: John Wiley & Sons; 1994. 476 p.
  • 54
    Bolender RP, Charleston JS Software for counting cells and estimating structural volumes with the optical disector and fractionator. Microsc Res Tech Vol. 25; 1993. p 314324.
  • 55
    Gundersen HJG. Stereology of arbitrary particles. J Microsc. 1986; 143: 345.
  • 56
    Marko M, Leith A, Parsons D. Three-dimensional reconstruction of cells from serial sections and whole-cell mounts using multilevel contouring of stereo micrographs. J Electron Microsc Tech 1988; 9: 395411.
  • 57
    Marko M Leith A. Contour based 3-D surface reconstruction using stereoscopic contouring and digitized images. In: KrieteA, editor. Visualization in biomedical microscopies. New York: VCH Press; 1992. p 4574.
  • 58
    Russ JC. Practical stereology. New York: Plenum Press; 1986. 196 p.
  • 59
    West MJ. New stereological methods for counting neurons. Neurobiol Aging 1993; 14: 275285.
  • 60
    West MJ. Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 1993; 14: 287293.
  • 61
    Liljeborg A, Czader M, Porwit A. A method to compensate for light attenuation with depth in three-dimensional DNA image cytometry using confocal scanning laser microscope. J Microscopy 1995; 177: 108114.
  • 62
    Margadant F, Leemann T, Niederer P. A precise light attenuation correction for confocal scanning microscopy with O(N4/3) computing time and O(N) memory requirements for N voxels. J Microscopy 1996; 182: 121132.
  • 63
    Strasters KC, Van der Voort HTM, Geusebroek JM, Smeulders AWM. Fast attenuation correction in fluorescence confocal imaging: a recursive approach. Bioimaging 1994; 2: 7892.
  • 64
    Guzowski JF, Worley PF. Cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH). In: TaylorGP, editor. Current protocols in neuroscience. New York: John Wiley & Sons; 2001. p
  • 65
    Lockett SJ, Herman B. Automatic detection of clustered, fluorescent-stained nuclei by digital image-based cytometry. Cytometry 1994; 17: 112.
  • 66
    Mackin Robert W Jr, Newton Louise M, Turner James N, Roysam Badrinath. Advances in high-speed three-dimensional imaging and automated segmentation algorithms for thick and overlapped clusters in cytologic preparations: application to cervical smears. Anal Quant Cytol Histol 1998; 20: 105121.