• 1
    Davis BH,Holden JT,Bene MC,Borowitz MJ,Braylan RC,Cornfield D,Gorczyca W,Lee R,Maiese R,Orfao A,Wells D,Wood BL,Stetler-Stevenson M. 2006-Bethesda International Consensus recommendations on the flow cytometric immunophenotypic analysis of hematolymphoid neoplasia: Medical indications. Cytometry Part B 2007; 72B: S5S13.
  • 2
    Ruiz-Argüelles A,Rivadeneyra-Espinoza L,Duque RE,Orfao A, Latin American Consensus Conference. Report on the second Latin American consensus conference for flow cytometric immunophenotyping of hematological malignancies. Cytometry Part B 2006; 70B: 3944.
  • 3
    Stetler-Stevenson M. H43-A2 Clinical Flow Cytometric Analysis of Neoplastic Hematolymphoid Cells; Approved Guideline, 2nd ed. Clinical and Laboratory Standards Institute: Wayne, PA; 2007.
  • 4
    Edwards BS,Oprea T,Prossnitz ER,Sklar LA. Flow cytometry for high-throughput, high-content screening. Curr Opin Chem Biol 2004; 8: 392398.
  • 5
    Szczepański T,Orfão A,van der Velden VH,San Miguel JF,van Dongen JJ. Minimal residual disease in leukaemia patients. Lancet Oncol 2001; 2: 409417.
  • 6
    MRD-AML-BFM Study Group, Langebrake C,Creutzig U,Dworzak M,Hrusak O,Mejstrikova E,Griesinger F,Zimmermann M,Reinhardt D. Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: The MRD-AML-BFM Study Group. J Clin Oncol 2006; 24: 36863692.
  • 7
    Sayala HA,Rawstron AC,Hillmen P. Minimal residual disease assessment in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol 2007; 20: 499512.
  • 8
    Rawstron AC,Villamor N,Ritgen M,Böttcher S,Ghia P,Zehnder JL,Lozanski G,Colomer D,Moreno C,Geuna M,Evans PA,Natkunam Y,Coutre SE,Avery ED,Rassenti LZ,Kipps TJ,Caligaris-Cappio F,Kneba M,Byrd JC,Hallek MJ,Montserrat E,Hillmen P. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia 2007; 21: 956964.
  • 9
    Moreno C,Villamor N,Colomer D,Esteve J,Giné E,Muntañola A,Campo E,Bosch F,Montserrat E. Clinical significance of minimal residual disease, as assessed by different techniques, after stem cell transplantation for chronic lymphocytic leukemia. Blood 2006; 107: 45634569.
  • 10
    Moreton P,Kennedy B,Lucas G,Leach M,Rassam SM,Haynes A,Tighe J,Oscier D,Fegan C,Rawstron A,Hillmen P. Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J Clin Oncol 2005; 23: 29712979.
  • 11
    Montillo M,Tedeschi A,Miqueleiz S,Veronese S,Cairoli R,Intropido L,Ricci F,Colosimo A,Scarpati B,Montagna M,Nichelatti M,Regazzi M,Morra E. Alemtuzumab as consolidation after a response to fludarabine is effective in purging residual disease in patients with chronic lymphocytic leukemia. J Clin Oncol 2006; 24: 23372342.
  • 12
    Montillo M,Schinkoethe T,Elter T. Eradication of minimal residual disease with alemtuzumab in B-cell chronic lymphocytic leukemia (B-CLL) patients: The need for a standard method of detection and the potential impact of bone marrow clearance on disease outcome. Cancer Invest 2005; 23: 488496.
  • 13
    Sanchez ML,Almeida J,Vidriales B, López-Berges MC, Garcia-Marcos MA, Moro MJ, Corrales A, Calmuntia MJ, San Miguel JF, Orfao A. Incidence of phenotypic aberrations in a series of 467 patients with B chronic lymphoproliferative disorders: Basis for the design of specific four-color stainings to be used for minimal residual disease investigation. Leukemia 2002; 16: 14601469.
  • 14
    Andersson R,Bruder CE,Piotrowski A,Menzel U,Nord H,Sandgren J,Hvidsten TR,Diaz de Ståhl T,Dumanski JP,Komorowski J. A Segmental Maximum A Posteriori Approach to Genome-wide Copy Number Profiling. Bioinformatics 2008; 24: 751758.
  • 15
    Li F,Yang Y. Analysis of recursive gene selection approaches from micro-array data. Bioinformatics 2005; 21: 37413747.
  • 16
    Griffith M,Tang MJ,Griffith OL,Morin RD,Chan SY,Asano JK,Zeng T,Flibotte S,Ally A,Baross A,Hirst M,Jones SJ,Morin GB,Tai IT,Marra MA. ALEXA: A microarray design platform for alternative expression analysis. Nat Methods 2008; 5: 118.
  • 17
    Schlabach MR,Luo J,Solimini NL,Hu G,Xu Q,Li MZ,Zhao Z,Smogorzewska A,Sowa ME,Ang XL,Westbrook TF,Liang AC,Chang K,Hackett JA,Harper JW,Hannon GJ,Elledge SJ. Cancer proliferation gene discovery through functional genomics. Science 2008; 319: 620624.
  • 18
    Perfetto SP,Chattopadhyay PK,Roederer M. Seventeen-colour flow cytometry: Unravelling the immune system. Nat Rev Immunol 2004; 4: 648655.
  • 19
    Roederer M,Brenchley JM,Betts MR,De Rosa SC. Flow cytometric analysis of vaccine responses: How many colors are enough?. Clin Immunol 2004; 110: 199205.
  • 20
    Robinson JP,Durack G,Kelley S. An innovation in flow cytometry data collection and analysis producing a correlated multiple sample analysis in a single file. Cytometry 1991; 12: 8290.
  • 21
    Robinson JP,Ragheb K,Lawler G,Kelley S,Durack G. Rapid multivariate analysis and display of cross-reacting antibodies on human leukocytes. Cytometry 1992; 13: 7582.
  • 22
    Costa ES,Arroyo ME,Pedreira CE,García-Marcos MA,Tabernero MD,Almeida J,Orfao A. A new automated flow cytometry data analysis approach for the diagnostic screening of neoplastic B-cell disorders. Leukemia 2006; 20: 12211230.
  • 23
    Kitsos CM,Bhamidipati P,Melnikova I,Cash EP,McNulty C,Furman J,Cima MJ,Levinson D. Combination of automated high throughput platforms, flow cytometry, and hierarchical clustering to detect cell state. Cytometry A 2007; 71A: 1627.
  • 24
    Zeng QT,Pratt JP,Pak J,Ravnic D,Huss H,Mentzer SJ. Feature-guided clustering of multi-dimensional flow cytometry datasets. J Biomed Inform 2007; 40: 325331.
  • 25
    Pedreira CE,Costa ES,Arroyo ME,Almeida J,Orfao A. A Multidimensional Classification Approach for the Automated Analysis of Flow Cytometry Data. IEEE Transactions on Biomedical Engineering 2008; 55: 11551162.
  • 26
    Pedreira CE,Costa ES,Barrena S,Lecravisse Q,Almeida J,VanDongen JJ,Orfao A. Generation of flow cytometry data files with a potentially infinite number of dimensions. Cytometry Part A 73A: 834846.
  • 27
    Orfao A,Schmitz G,Brando B,Ruiz-Arguelles A,Basso G,Braylan R,Rothe G,Lacombe F,Lanza F,Papa S,Lucio P,San Miguel JF. Useful information provided by the flow cytometric immunophenotyping of hematological malignancies: Current status and future directions. Clin Chem 1999; 45: 17081717.
  • 28
    Olaru D,Campos L,Flandrin P,Nadal N,Duval A,Chautard S,Guyotat D. Multiparametric analysis of normal and postchemotherapy bone marrow: Implication for the detection of leukemia-associated immunophenotypes. Cytometry B 2008; 74B: 1724.
  • 29
    Duda RO,Hart PE,Stork GD. Baysian Decision Theory. In: DudaRO,HartPE,StorkGD, editors. Pattern Classification,2nd ed. New York: Wiley; 2001. pp 2082.
  • 30
    Harris NL,Jaffe ES,Diebold J,Flandrin G,Muller-Hermelink HK,Vardiman J,Lister TA,Bloomfield CD. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: Report of the Clinical Advisory Committee Meeting—Airlie House, Virginia, November 1997. J Clin Oncol 1999; 17: 38353849.
  • 31
    Orfao A,Pedreira CE,Costa ES. A method for generating flow cytometry data files containing an infinite number of dimensions based on data estimation. U.S. Pat. No. 11/240,167; 2007.
  • 32
    Orfao A,Pedreira CE,Costa ES. Generation of flow cytometry data files with a potentially infinite number of dimensions derived from the fusion of a group of separate flow cytometry data files and their multidimensional reconstruction with both actually measured and estimated flow cytometry data. Eur. Pat. No. EP1,770,387; 2007.
  • 33
    Duda RO,Hart PE,Stork GD. Maximun-likelihood and Bayesian parameter estimation. In: DudaRO,HartPE,StorkGD, editors. Pattern Classification,2nd ed. New York: Wiley, 2001; 115116.
  • 34
    Duda RO,Hart PE,Stork GD. Unsupervised learning and clustering. In: DudaRO,HartPE,StorkGD, editors. Pattern classification,2nd ed. New York, 2001; 526527.
  • 35
    Spidlen J,Gentleman RC,Haaland PD,Langille M,Le Meur N,Ochs MF,Schmitt C,Smith CA,Treister AS,Brinkman RR. Data standards for flow cytometry. OMICS 2006; 10: 209214.
  • 36
    Kern W,Haferlach C,Haferlach T,Schnittger S. Monitoring of minimal residual disease in acute myeloid leukemia. Cancer 2008; 112: 416.
  • 37
    Coustan-Smith E,Sancho J,Hancock ML,Boyett JM,Behm FG,Raimondi SC,Sandlund JT,Rivera GK,Rubnitz JE,Ribeiro RC,Pui CH,Campana D. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000; 96: 26912696.
  • 38
    Lucio P,Gaipa G,van Lochem EG,van Wering ER,Porwit-MacDonald A,Faria T,Bjorklund E,Biondi A,van den Beemd MW,Baars E,Vidriales B,Parreira A,van Dongen JJ,San Miguel JF,Orfao A; BIOMED-I. BIOMED I concerted action report: Flow cytometric imunophenotyping of B-ALL with standartized triple-stainings. Leukemia 2001; 15: 11851192.
  • 39
    Menendez P,Vargas A,Bueno C,Barrena S,Almeida J,De Santiago M,López A,Roa S,San Miguel JF,Orfao A. Quantitative analysis of bcl-2 expression in normal and leukemic human B-cell differentiation. Leukemia 2004; 18: 491498.
  • 40
    Tosetto A,Castaman G,Rodeghiero F. Evidence-based diagnosis of type 1 von Willebrand disease: A Bayes theorem approach. Blood 2008; 111: 39984003.
  • 41
    Kroft SH,Dawson DB,McKenna RW. Large cell lymphoma transformation of chronic lymphocytic leukemia/small lymphocytic lymphoma. A flow cytometric analysis of seven cases. Am J Clin Pathol 2001; 115: 385395.
  • 42
    Späth-Schwalbe E,Flath B,Kaufmann O,Thiel G,Brinckmann R,Dietel M,Possinger K. An unusual case of leukemic non-Hodgkin's lymphoma with blastic transformation. Ann Hematol 2000; 79: 217221.
  • 43
    van Lochem EG,Wiegers YM,van den Beemd R,Hählen K,van Dongen JJ,Hooijkaas H. Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy. Leukemia 2000; 14: 688695.