Literature Cited

  • 1
    Jones RN. Resistance patterns among nosocomial pathogens. Chest 2001; 119: 397S404S.
  • 2
    Maquelin K,Kirschner C,Choo-Smith LP,Ngo-Thi NA,van Vreeswijk T,Stammler M,Endtz HP,Bruining HA,Naumann D,Puppels GJ. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol 2003; 41: 324329.
  • 3
    Goodacre R,Timmins EM,Burton R,Kaderbhai N,Woodward AM,Kell DB,Rooney PJ. Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 1998; 144: 11571170.
  • 4
    Maquelin K,Kirschner C,Choo-Smith LP,van den Braak N,Endtz HP,Naumann D,Puppels GJ. Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 2002; 51: 255271.
  • 5
    Vanderberg LA. Detection of biological agents: Looking for bugs in all the wrong places. Appl Spectrosc 2000; 54: 376A385A.
  • 6
    Holland RD,Wilkes JG,Ralli F,Sutherland JB,Persons CC,Voorhees KJ,Lay JOJ. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 1996; 10: 12271232.
  • 7
    Al-Khaldi SF,Mossoba MM. Gene and bacterial identification using high-throughput technologies: Genomics, proteomics, and phenomics. Nutrition 2004; 20: 3238.
  • 8
    Bej AK,Mahbubani MH,Dicesare JL,Atlas RM. Polymerase chain reaction-gene probe detection of microorganisms by using filter-concentrated samples. Appl Environm Microbiol 1991; 57: 35293534.
  • 9
    Belgrader P,Benett W,Hadley D,Richards J,Stratton P,Mariella JR,Milanovich F. PCR detection of bacteria in seven minutes. Science 1999; 284: 449450.
  • 10
    Ivnitski D,Abdel-Hamid I,Atanasov P,Wilkins E. Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 1999; 14: 599624.
  • 11
    Hauer B,Eipel H. Flow cytometry: Useful tool for analyzing bacterial populations cell by cell. In: ShapiroJA,DworkinM, editors. Bacteria as Multicellular Organisms. Oxford, New York: Oxford University Press; 1997. pp 273291.
  • 12
    Luppa PB,Sokoll LJ,Chan DW. Immunosensors—Principles and applications to clinical chemistry. Clin Chim Acta 2001; 314: 126.
  • 13
    Shapiro HM. Microbial analysis at the single-cell level: Tasks and techniques. J Microbiol Methods 2000; 42: 316.
  • 14
    Oliveira K,Procop GW,Wilson D,Coull J,Stender H. Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol 2002; 40: 247251.
  • 15
    Brehm-Stecher BF,Johnson EA. Single-cell microbiology: Tools, technologies, and applications. Microbiol Mol Biol Rev 2004; 68: 538559.
  • 16
    Freydiere AM,Guinet R,Boiron P. Yeast identification in the clinical microbiology laboratory: Phenotypical methods. Med Mycol 2001; 39: 933.
  • 17
    Xie C,Mace J,Dinno MA,Li YQ,Tang W,Newton RJG,Gemperline PJ. Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy. Anal Chem 2005; 77: 43904397.
  • 18
    Naumann D,Helm D,Labischinski H. Microbiological characterizations by FT-IR Spectroscopy. Nature 1991; 351: 8182.
  • 19
    Naumann D,Keller S,Helm D,Schultz C,Schrader B. FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the noninvasive characterization of intact microbial cells. J Mol Struct 1995; 347: 399405.
  • 20
    Danzer K,Hobert H,Fischbacher C,Jagemann K-U. Chemometrik. Heidelberg, Berlin: Springer Verlag; 2001. p 405.
  • 21
    Jolliffe IT. Principal Component Analysis. New York: Springer Verlag; 2002. p 487.
  • 22
    Scherer A.In: BibelW,HahnWV,KruseR, editors. Neuronale Netze—Grundlagen und anwendungen. Braunschweig, Wiesbaden: Vieweg Verlag; 1997. p 249.
  • 23
    Peschke KD,Haasdonk B,Ronneberger O,Burkhardt H,Rösch P,Harz M,Popp J. Using transformation knowledge for the classification of Raman spectra of biological samples. Innsbruck, Austria: Proceedings of the 24th IASTED International Conference of Biomedical Engineering, 2006. p 288.
  • 24
    Rösch P,Harz M,Krause M,Petry R,Peschke K-D,Burkhardt H,Ronneberger O,Schüle A,Schmauz G,Riesenberg R, Wuttig A, Lankers M, Hofer S, Thiele H, Motzkus HW, Popp J., Online monitoring and identification of bioaerosol (OMIB). In: PoppJ,StrehleM, editors. Biophotonics. Visions for Better Health Care. Weinheim: Wiley-VCH; 2006. p 596.
  • 25
    Maquelin K,Choo-Smith L-P,Kirschner C,Ngo Thi NA,Naumann D,Puppels GJ. Vibrational spectroscopic studies of microorganisms. In: ChalmersJM,GriffithsPR, editors.Handbook of Vibrational Spectroscopy. Volume 5. Chichester: John Wiley; 2002. pp 33083334.
  • 26
    Petry R,Schmitt M,Popp J. Raman spectroscopy—A prospective tool in the life sciences. Chemphyschem 2003; 4: 1430.
  • 27
    Urlaub E,Popp J,Kiefer W,Bringmann G,Koppler D,Schneider H,Zimmermann U,Schrader B. FT-Raman investigation of alkaloids in the liana Ancistrocladus heyneanus. Biospectroscopy 1998; 4: 113120.
  • 28
    Baia L,Gigant K,Posset U,Petry R,Schottner G,Kiefer W,Popp J. Confocal Raman investigations on hybrid polymer coatings. Vib Spectrosc 2002; 29: 245249.
  • 29
    Baia L,Gigant K,Posset U,Schottner G,Kiefer W,Popp J. Confocal Micro-Raman Spectroscopy: Theory and application to a hybrid polymer coating. Appl Spectrosc 2002; 56: 536540.
  • 30
    Rösch P,Harz M,Schmitt M,Peschke K-D,Ronneberger O,Burkhardt H,Motzkus H-W,Lankers M,Hofer S,Thiele H, et al. Chemotaxonomic identification of single bacteria by Micro-Raman Spectroscopy: Application to clean room relevant biological contaminations. Appl Environ Microbiol 2005; 71: 16261637.
  • 31
    Gremlich H-U,Yan B. Infrared and Raman Spectroscopy of Biological Materials. Basel, NY: Marcel Dekker; 2001. p 581.
  • 32
    Greve J,Puppels GJ. Raman microscopy of single whole cells. In: HesterRE,ClarkRJH, editors. Biomol Spectrosc, 1 ed. Volume 20A, Advances in Spectroscopy. Chichester: Wiley; 1992. pp 231265.
  • 33
    McHale JL. Resonance Raman spectroscopy. In: ChalmersJM,GriffithsPR, editors. Handbook of Vibrational Spectroscopy. Volume 1. Chichester: Wiley; 2002. pp 534556.
  • 34
    Hering K,Cialla D,Ackermann K,Dörfer T,Möller R,Schneideweind H,Mattheis R,Fritzsche W,Rösch P,Popp J. SERS: A versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem 2008; 390: 113124.
  • 35
    Asher SA. UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry, Part 1. Anal Chem 1993; 65: 59A66A.
  • 36
    Nelson WH,Manoharan R,Sperry JF. UV resonance Raman studies of bacteria. Appl Spectros Rev 1992; 27: 67124.
  • 37
    Lopez-Diez EC,Goodacre R. Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics. Anal Chem 2004; 76: 585591.
  • 38
    Jarvis RM,Brooker A,Goodacre R. Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discuss 2006; 132(Surface Enhanced Raman Spectroscopy): 281292.
  • 39
    Jarvis RM,Goodacre R. Characterization and identification of bacteria using SERS. Chem Soc Rev 2008; 37: 931936.
  • 40
    Nie S,Emory SR. Probing single molecules and single nanoparticles by Surface-Enhanced Raman Scattering. Science 1997; 275: 11021106.
  • 41
    Neugebauer U. Characterization of Bacteria, Antibiotics of the Fluoroquinolone Type and Their Biological Targets DNA and Gyrase Utilizing the Unique Potential of Vibrational Spectroscopy [Dissertation]. Jena: Friedrich-Schiller-Universität; 2007. p 265.
  • 42
    Choo-Smith LP,Maquelin K,Van Vreeswijk T,Bruining HA,Puppels GJ,Thi NAN,Kirschner C,Naumann D,Ami D,Villa AM, et al. Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol 2001; 67: 14611469.
  • 43
    Maquelin K,Choo-Smith L-P,van Vreeswijk T,Endtz HP,Smith B,Bennett R,Bruining HA,Pupples GJ. Raman spectroscopic method for identification of clinical relevant microorganisms growing on solid culture medium. Anal Chem 2000; 72: 1219.
  • 44
    Naumann D,Helm D,Labischinski H,Giesbrecht P. The characterization of microorganisms by Fourier-Transform Infrared Spectroscopy (FT-IR). In: NelsonWH, editor. Modern Techniques for Rapid Microbiological Analysis, Modern Techniques for Rapid Microbiological Analysis. New York: VCH Publisher; 1991. pp 4396.
  • 45
    Naumann D. Infrared spectroscopy in microbiology. In: MeyersRA, editor. Encyclopedia of Analytical Chemistry, Biomedical Spectroscopy. Chichester: Wiley; 2000. pp 102131.
  • 46
    Leyton P,Lizama-Vergara PA,Campos-Valette MM,Becker MI,Clavijo E,Reyes IC,Vera M,Jerez CA. Surface enhanced Raman spectrum of nanometric molecular systems. J Chil Chem Soc 2005; 50: 725730.
  • 47
    Dalterio RA,Nelson WH,Britt D,Sperry JF. An ultraviolet (242 nm excitation) resonance Raman study of live bacteria and bacterial compounds. Appl Sepctrosc 1987; 41: 417422.
  • 48
    Chadha S,Nelson WH,Sperry JF. Ultraviolet micro-Raman spectrograph for the detection of small numbers of bacterial cells. Rev Sci Instrum 1993; 64: 30883093.
  • 49
    Nelson WH,Sperry JF. UV resonance Raman spectroscopic detection and identification of bacteria and other microorganisms. In: NelsonWH, editor. Modern Techniques For Rapid Microbiological Analysis. New York: VCH; 1991. pp 97143.
  • 50
    Gaus K,Rösch P,Petry R,Peschke KD,Ronneberger O,Burkhardt H,Baumann K,Popp J. Classification of lactic acid bacteria with UV-resonance Raman Spectroscopy. Biopolymers 2006; 82: 286290.
  • 51
    Wu Q,Hamilton T,Nelson WH,Elliott S,Sperry JF,Wu M. UV Raman spectral intensities of E. coli and other bacteria excited at 228.9, 244.0, and 248.2 nm. Anal Chem 2001; 73: 34323440.
  • 52
    Wu Q,Nelson WH,Elliot S,Sperry JF,Feld M,Dasari R,Manoharan R. Intensities of E. coli nucleic acid Raman spectra excited selectively from whole cells with 251-nm light. Anal Chem 2000; 72: 29812986.
  • 53
    Jarvis RM,Goodacre R. Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteria. FEMS Microbiol Lett 2004; 232: 127132.
  • 54
    Tarcea N,Harz M,Rösch P,Frosch T,Schmitt M,Thiele H,Hochleitner R,Popp J. UV Raman spectroscopy—A technique for biological and mineralogical in situ planetary studies. Spectrochim Acta A Mol Biomol Spectrosc 2007; 68: 10291035.
  • 55
    Harz M,Rösch P,Peschke KD,Ronneberger O,Burkhardt H,Popp J. Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst 2005; 130: 15431550.
  • 56
    Hutsebaut D,Maquelin K,de Vos P,Vandenabeele P,Moens L,Puppels GJ. Effect of culture conditions on the achievable taxonomic resolution of Raman spectroscopy disclosed by three bacillus species. Anal Chem 2004; 76: 62746281.
  • 57
    Neugebauer U,Rösch P,Schmitt M,Popp J,Julien C,Rasmussen A,Budich C,Deckert V. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. Chemphyschem 2006; 7: 14281430.
  • 58
    Neugebauer U,Schmid U,Baumann K,Holzgrabe U,Ziebuhr W,Kozitskaya S,Kiefer W,Schmitt M,Popp J. Characterization of bacterial growth and the influence of antibiotics by means of UV Resonance Raman Spectroscopy. Biopolymers 2006; 82: 306311.
  • 59
    Schuster KC,Reese I,Urlaub E,Gapes JR,Lendl B. Multidimensional information on the chemical composition of single bacterial cells by Confocal Raman Microspectroscopy. Anal Chem 2000; 72: 55295534.
  • 60
    Schuster KC,Urlaub E,Gapes JR. Single-cell analysis of bacteria by Raman microscopy: Spectral information on the chemical composition of cells and on the heterogeneity in a culture. J Microbiol Methods 2000; 42: 2938.
  • 61
    Rösch P,Schmitt M,Kiefer W,Popp J. The identification of microorganisms by micro-Raman Spectroscopy. J Mol Struct 2003; 661–662: 363369.
  • 62
    Pätzold R,Keuntje M,Theophile K,Mueller J,Mielcarek E,Ngezahayo A,Anders-von Ahlften A. In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy. J Microbiol Methods 2008; 72: 241248.
  • 63
    Esposito AP,Talley CE,Huser T,Hollars CW,Schaldach CM,Lane SM. Analysis of single bacterial spores by Micro-Raman Spectroscopy. Appl Spectrosc 2003; 57: 868871.
  • 64
    Chan JW,Winhold H,Corzett MH,Ulloa JM,Cosman M,Balhorn R,Huser T. Monitoring dynamic protein expression in living E. coli. bacterial cells by Laser Tweezers Raman Spectroscopy. Cytometry Part A 2007; 71A: 468474.
  • 65
    Neugebauer U,Schmid U,Baumann K,Ziebuhr W,Kozitskaya S,Holzgrabe U,Schmitt M,Popp J. The influence of fluoroquinolone drugs on the bacterial growth of S. epidermidis utilizing the unique potential of vibrational spectroscopy. J Phys Chem A 2007; 111: 28982906.
  • 66
    De Gelder J,De Gussem K,Vandenabeele P,de Vos P,Moens L. Methods for extracting biochemical information from bacterial Raman spectra: An explorative study on Cupriavidus metallidurans. Anal Chim Acta 2007; 585: 234240.
  • 67
    Mello C,Ciuffi KJ,Nassar E,Ribeiro D,Poppi RJ. Two-dimensional low resolution Raman spectroscopy applied to fast discrimination of clinically relevant microorganisms: A whole-organism fingerprinting approach. J Braz Chem Soc 2006; 17: 7378.
  • 68
    Kneipp K,Haka AS,Kneipp H,Badizadegan K,Yoshizawa N,Boone C,Shafer-Peltier KE,Motz JT,Dasari RR,Feld MS. Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl Spectrosc 2002; 56: 150154.
  • 69
    Grow AE,Wood LL,Claycomb JL,Thompson PA. New biochip technology for label-free detection of pathogens and their toxins. J Microbiol Methods 2003; 53: 221233.
  • 70
    Biju V,Pan D,Gorby YA,Fredrickson J,McLean J,Saffarini D,Lu HP. Combined spectroscopic and topographic characterization of nanoscale domains and their distributions of a redox protein on bacterial cell surfaces. Langmuir 2007; 23: 13331338.
  • 71
    Zeiri L,Bronk BV,Shabtai Y,Eichler J,Efrima S. Surface-enhanced Raman spectroscopy as a tool for probing specific biochemical components in bacteria. Appl Spectrosc 2004; 58: 3340.
  • 72
    Szeghalmi A,Kaminskyj S,Rösch P,Popp J,Gough KM. Time fluctuations and imaging in the SERS spectra of fungal hypha grown on nanostructured substrates. J Phys Chem B 2007; 111: 1291612924.
  • 73
    Laucks ML,Sengupta A,Junge K,Davis EJ,Swanson BD. Comparison of psychro-active arctic marine bacteria and common mesophillic bacteria using surface-enhanced Raman spectroscopy. Appl Spectrosc 2005; 59: 12221228.
  • 74
    Alexander TA,Pellegrino PM,Gillespie JB. Near-infrared surface-enhanced-Raman-scattering-mediated detection of single optically trapped bacterial spores. Appl Spectrosc 2003; 57: 13401345.
  • 75
    Budich C,Neugebauer U,Popp J,Deckert V. Cell wall investigations utilizing tip-enhanced Raman scattering. J Microsc 2008; 229: 533539.
  • 76
    Neugebauer U,Schmid U,Baumann K,Ziebuhr W,Kozitskaya S,Deckert V,Schmitt M,Popp J. Towards a detailed understanding of bacterial metabolism: Spectroscopic characterization of Staphylococcus epidermidis. Chemphyschem 2007; 8: 124137.
  • 77
    Liu Y,Chen Y-R,Nou X,Chao K. Potential of surface-enhanced Raman spectroscopy for the rapid identification of Escherichia coli and Listeria monocytogenes cultures on silver colloidal nanoparticles. Appl Spectrosc 2007; 61: 824831.
  • 78
    Premasiri WR,Moir DT,Klempner MS,Krieger N,Jones GII,Ziegler LD. Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J Phys Chem B 2005; 109: 312320.
  • 79
    Leary JF,Acharya G,Zordan MD,Grafton M,Cooper CL,Reece LM,Park K. High Throughput and Multiplexed Detection of Food-Borne Pathogens by a Hybrid Microfluidic SPR and Molecular Imaging Cytometry Device. Dresden, Germany: Bad Schandau; 2008.
  • 80
    Krause M,Radt B,Rösch P,Popp J. The identification of single living bacteria by a combination of fluorescence staining techniques and Raman spectroscopy. J Raman Spectrosc 2007; 38: 369372.
  • 81
    Rösch P,Harz M,Peschke K-D,Ronneberger O,Burkhardt H,Schuele A,Schmauz G,Lankers M,Hofer S,Thiele H, et al. On-Line monitoring and identification of bioaerosols. Anal Chem 2006; 78: 21632170.
  • 82
    Huang WE,Griffiths RI,Thompson IP,Bailey MJ,Whiteley AS. Raman microscopic analysis of single microbial cells. Anal Chem 2004; 76: 44524458.
  • 83
    Huang WE,Ude S,Spiers AJ. Pseudomonas fluorescens SBW25 biofilm and planktonic cells have differentiable Raman spectral profiles. Microb Ecol 2007; 53: 471474.
  • 84
    Huang WE,Stoecker K,Griffiths R,Newbold L,Daims H,Whiteley AS,Wagner M. Raman-FISH: Combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 2007; 9: 18781889.
  • 85
    Xie C,Li Y-Q,Tang W,Newton RJ. Study of dynamical process of heat denaturation in optically trapped single microorganisms by Near-infrared Raman spectroscopy. J Appl Phys 2003; 94: 61386142.
  • 86
    Rösch P,Harz M,Peschke KD,Ronneberger O,Burkhardt H,Popp J. Identification of single eukaryotic cells with micro-Raman spectroscopy. Biopolymers 2006; 82: 312316.
  • 87
    Rösch P,Harz M,Schmitt M,Popp J. Raman spectroscopic identification of single yeast cells. J Raman Spectrosc 2005; 36: 377379.
  • 88
    Huang Y-S,Karashima T,Yamamoto M,Hamaguchi H. Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy. J Raman Spectrosc 2003; 34: 13.
  • 89
    Huang Y-S,Karashima T,Yamamoto M,Hamaguchi H-O. Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells time- and space-resolved Raman spectroscopy. Biochemistry 2005; 44: 1000910019.
  • 90
    Huang Y-S,Nakatsuka T,Hamaguchi H-O. Behaviors of the “Raman spectroscopic signature of life” in single living fission yeast cells under different nutrient, stress, and atmospheric conditions. Appl Spectrosc 2007; 61: 12901294.
  • 91
    Kalasinsky KS,Hadfield T,Shea AA,Kalasinsky VF,Nelson MP,Neiss J,Drauch AJ,Vanni GS,Treado PJ. Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: Signature development and evaluation. Anal Chem 2007; 79: 26582673.
  • 92
    Tripathi A,Jabbour RE,Treado PJ,Neiss JH,Nelson MP,Jensen JL,Snyder AP. Waterborne pathogen detection using Raman spectroscopy. Appl Spectrosc 2008; 62: 19.
  • 93
    Yang H,Irudayaraj J. Rapid detection of foodborne microorganisms on food surface using Fourier Transform Raman Spectroscopy. J Mol Struct 2003; 646: 3543.