• 1
    Müller S,Nebe-von-Caron G. Functional single-cell analyses - flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev (in press). DOI: 10.1111/j. 1574-6976.2010.00214.x
  • 2
    Liu J,BarryIIICE,Besra GS,Nikaido H. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 1996; 271: 2954529551.
  • 3
    Scheffers DJ,Pinho MG. Bacterial cell wall synthesis. New insights from localization studies. Microbiol Mol Biol R 2005; 69: 585607.
  • 4
    Braun V. Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim Biophys Acta 1975; 415: 335377.
  • 5
    Labischinski H,Goodell EW,Goodell A,Hochberg ML. Direct proof of a ‘more-than-single-layered’ peptidoglycan architecture of Escherichia coli W7: A neutron small-angle scattering study. J Bacteriol 1991; 173: 751756.
  • 6
    Van Heijenoort J. Assembly of the monomer unit of bacterial peptidoglycan. Cell Mol Life Sci 1998; 54: 300304.
  • 7
    Brötz H,Bierbaum G,Leopold K,Reynolds PE,Sahl H-G. The lantibiotic mersacidin inhibits peptidogycan synthesis by targeting lipid II. Antimicrob Agents Chemother 1998; 42: 154160.
  • 8
    Niederweis M. Nutrient acquisition by mycobacteria. Microbiology 2008; 154: 679692.
  • 9
    Stephan J,Bender J,Wolschendorf F,Hoffmann C,Roth E,Mailänder C,Engelhardt H,Niederweis M. The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol Microbiol 2005; 58: 714730.
  • 10
    Cox RA,Cook GM. Growth regulation in the mycobacterial cell. Curr Mol Med 2007; 7: 231245.
  • 11
    Mailänder C,Reiling N,Engelhardt H,Bossmann S,Ehlers S,Niederweis M. The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology 2004; 150: 853864.
  • 12
    Riess FG,Dörner U,Schiffler B,Benz R. Study of the properties of a channel-forming protein of the cell wall of the gram−positive bacterium Mycobacterium phlei. J Membr Biol 2001; 182: 147157.
  • 13
    Hancock RE,Farmer SW,Li ZS,Poole K. Interaction of aminoglycosides with the outer membranes and purified lipopolysaccharide and OmpF porin of Escherichia coli. Antimicrob Agents Chemother 1991; 35: 13091314.
  • 14
    DiRusso CC,Black PN. Bacterial long chain fatty acid transport: Gateway to a fatty acid-responsive signaling system. J Biol Chem 2004; 279: 4956349566.
  • 15
    Hoffmann C,Leis L,Niederweis M,Plitzko JM,Engelhardt H. Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayerstructure. Proc Natl Acad Sci USA 2008; 105: 39633967.
  • 16
    Eggeling L,Krumbach K,Sahm H. L-glutamate efflux with Corynebacterium glutamicum: Why is penicillin treatment or tween addition doing the same? J Mol Microbiol Biotechnol 2001; 3: 6768.
  • 17
    Cadenas E,Garland PB. Synthesis of cytoplasmic membrane during growth and division of Escherichia coli. Biochem J 1979; 184: 4550.
  • 18
    Müller S,Ullrich S,Lösche A,Loffhagen N,Babel W. Flow cytometric techniques to characterise physiological states of Acinetobacter calcoaceticus. J Microbiol Methods 2000; 40: 6777.
  • 19
    Mykytczuk NCS,Trevors JT,Leduca LG,Ferroni GD. Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol 2007; 95: 6082.
  • 20
    Faller B,Wohnsland F. Physicochemical parameters as tools in drug discovery and lead optimization. In: TestaB,van de WaterbeemdH,FolkersG,GuyR, editors. Pharmacokinetic optimization in drug research: Biological, physicochemical and computational strategies. Wiley-VCH: Weinheim, Germany; 2001. p 257273.
  • 21
    Leo A,Hansch C,Elkins D. Partition coefficients and their uses. Chem Rev 1971; 71: 525616.
  • 22
    Dapson RW. Dye-tissue interactions: Mechanisms, quantification and bonding parameters for dyes used in biological staining. Biotechnol Histochem 2005; 80: 4972.
  • 23
    Yu LX,Lipka E,Crison JR,Amidon GL. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv Drug Del Rev 1996; 19: 359376.
  • 24
    Youdim KA,Avdeef A,Abbott NJ. In vitro transmonolayer permeability calculations: Often forgotten assumptions. Drug Discov Today 2003; 8: 9971003.
  • 25
    Thomae AV,Wunderli-Allenspach H,Krämer SD. Permeation of aromatic carboxylic acids cross lipid bilayers: The pH-partition hypothesis revisited. Biophys J 2005; 89: 18021811.
  • 26
    Wright KM,Horobin RW,Opark KJ. Phloem mobility of fluorescent xenobiotics in Arabidopsis in relation to their physicochemical properties. J Exp Bot 1996; 47: 17791787.
  • 27
    Thomas JA,Buchsbaum RN,Zimniak A,Racker E. Intracellular pH measurements in ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochem 1979; 18: 22102218.
  • 28
    O'Shea R,Moser HE. Physicochemical properties of antibacterial compounds: Implications for drug discovery. J Med Chem 2008; 51: 28712871.
  • 29
    Driessen AJM,Nouwen N. Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 2008; 77: 643667.
  • 30
    Izumi S,Urano Y,Hanaoka K,Terai T,Nagano T. A simple and effective strategy to increase the sensitivity of fluorescence probes in living cells. J Am Chem Soc 2009; 131: 1018910200.
  • 31
    Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev 1992; 56: 395411.
  • 32
    Ananta E,Voigt D,Zenker M,Heinz V,Knorr D. Cellular injuries upon exposure of Escherichia coli and Lactobacillus rhamnosusto high-intensity ultrasound. J Appl Microbiol 2005; 99: 271278.
  • 33
    Hoefel D,Grooby WL,Monis PT,Andrews S,Saint CP. A comparative study of carboxyfluorescein diacetate and carboxyfluorescein diacetate succinimidyl ester as indicators of bacterial activity. J Microbiol Methods 2003; 52: 379388.
  • 34
    Morono Y,Takano S,Miyanaga K,Tanji Y,Unno H,Hori K. Application of glutaraldehyde for the staining of esterase-active cells with carboxyfluorescein diacetate. Biotechnol Lett 2004; 26: 379383.
  • 35
    Tanaka Y,Yamaguchi N,Nasu M. Viability of Escherichia coli O157:H7 in natural river water determined by the use of flow cytometry. J Appl Microbiol 2000; 88: 228236.
  • 36
    Nikaido H,Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev 1985; 49: 132.
  • 37
    Leive L. The barrier function of the gram−negative envelope. Ann NY Acad Sci 1974; 235: 109127.
  • 38
    Sánchez D,Rojas M,Hernández I,Radzioch D,García LF,Barrera LF. Role of TLR2- and TLR4-mediated signaling in Mycobacterium tuberculosis-induced macrophage death. Cell Immunol 2010; 260: 128136.
  • 39
    Salim AH,Aung KJM,Hossain MA,Van Deun A. Early and rapid microscopy-based diagnosis of true treatment failure and MDR-TB. Int J Tuberc Lung Dis 2006; 10: 12481254.
  • 40
    Li XZ,Zhang L,Nikaido H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 2004; 48: 24152423.
  • 41
    Saier MH,Paulsen IT,Sliwinski MK,Pao SS,Skurray RA,Nikaido H. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J 1998; 12: 265274.
  • 42
    Pagès J-M,Amaral L. Mechanisms of drug efflux and strategies to combat them: Challenging the efflux pump of gram−negative bacteria. Biochim Biophys Acta 2009; 1794: 826833.
  • 43
    Markham PN,Neyfakh AA. Efflux-mediated drug resistance in gram−positive bacteria. Curr Opin Microbiol 2001; 4: 509514.
  • 44
    Günther S,Geyer W,Harms H,Müller S. Fluorogenic surrogate substrates for toluene degrading bacteria - Are they useful for activity analysis? J Microbiol Meth 2007; 70: 272283.
  • 45
    Hughes RC,Thurman PF. Cross-linking of bacterial cell walls with glutaraldehyde. Biochem J 1970; 119: 925926.
  • 46
    Pantoja S,Lee C,Marecek JF. Hydrolysis of peptides in seawater and sediment. Mar Chem 1997; 57: 2540.
  • 47
    Yoshioka K,Takahashi H,Homma T,Saito M,Oh K-B,Nemoto Y,Matsuoka H. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim Biophys Acta 1996; 1289: 59.
  • 48
    Achilles J,Harms H,Müller S Analysis of living S. cerevisiae cell states - a three color approach. Cytometry Part A 2006; 69A: 173177.
  • 49
    Shin D-S,Oh K-B. Effect of 2-NBDG, a fluorescent derivative of glucose, on microbial cell growth. J Microbiol Biotechnol 2002; 12: 834837.
  • 50
    Erni B. Glucose transport in Escherichia coli. FEMS Microbiol Rev 1989; 83: 1324.
  • 51
    Natarajan A,Srienc F. Dynamics of glucose uptake by single Escherichia colicells. Metab Eng 1999; 1: 320333.
  • 52
    Yoshioka K,Saito M,Oh K-B,Nemoto Y,Matsuoka H,Natsume M,Abe H. Intracellular fate of 2-NBDG, a fluorescent probe for glucose uptake activity, in Escherichia coli cells. Biosci Biotechnol Biochem 1996; 60: 18991901.
  • 53
    Ghosh PB,Whitehouse MW. 7-Chloro-4-nitrobenzo-2-oxa-1,3-diazole: A new fluorigenic reagent for amino acids and other amines. Biochem J 1968; 108: 155156.
  • 54
    Natarajan A,Srienc F. Glucose uptake rates of single E. coli cells grown in glucose-limited chemostat cultures. J Microbiol Methods 2000; 42: 8796.
  • 55
    Sträuber H,Hübschmann T,Jehmlich N,Schmidt F,von Bergen M,Harms H,Müller S NBDT (3-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-3-toluene) - a novel fluorescent dye for studying mechanisms of toluene uptake into vital bacteria. Cytometry Part A 2010; 77A: 113120.
  • 56
    Rojas A,Duque E,Mosqueda G,Golden G,Hurtado A,Ramos JL,Segura A. Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 2001; 183: 39673973.
  • 57
    Ocaktan A,Yoneyama H,Nakae T. Use of fluorescence probes to monitor function of the subunit proteins of the MexA-MexB-OprM drug extrusion machinery in Pseudomonas aeruginosa. J Mol Biol 1997; 272: 2196421969.
  • 58
    Jayaraman S. A novel method for the detection of viable human pancreatic beta cells by flow cytometry using fluorophores that selectively detect labile zinc, mitochondrial membrane potential and protein thiols. Cytometry Part A 2008; 73A: 615625.
  • 59
    Hewitt CJ,Nebe-von-Caron G. The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state. In: Advances in biochemical engineering/biotechnology, vol. 89. Springer-Verlag: Berlin Heidelberg; 2004. p 197223.
  • 60
    Reis A,da Silva TL,Kent CA,Kosseva M,Roseiro JC,Hewitt CJ. Monitoring population dynamics of the thermophilic Bacillus licheniformis CCMI 1034 in batch and continuous cultures using multi-parameter flow cytometry. J Biotechnol 2005; 115: 199210.
  • 61
    Pláîsek J,Sigler K. Slow fluorescent indicators of membrane potential: A survey of different approaches to probe response analysis. J Photoch Photobio B 1996; 33: 101124.
  • 62
    Waggoner A. Optical probes of membrane potential. J Membr Biol 1976; 27: 317334.
  • 63
    Lampidis TJ,Castello C,del Giglio A,Pressman BC,Viallet P,Trevorrow KW,Valet GK,Tapiero H,Savaraj N. Relevance of the chemical charge of rhodamine dyes to multiple drug resistance. Biochem Pharmacol 1989; 38: 42674271.
  • 64
    Jiao N,Yang Y,Luo T. Membrane potential based characterization by flow cytometry of physiological states in an aerobic anoxygenic phototrophic bacterium. Aquat Microb Ecol 2004; 7: 149158.
  • 65
    Shi L,Günther S,Hübschmann T,Wick LY,Harms H,Müller S Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry Part A 2007; 71A: 592598.
  • 66
    Müller S,Bley T,Babel W. Adaptive responses of Ralstonia eutropha to master feast and famine conditions analysed by flow cytometry. J Biotechnol 1999; 75: 8197.
  • 67
    Müller S,Loffhagen N,Bley T,Babel W. Membrane-potential-related fluorescence intensity indicates bacterial injury. Microbiol Res 1996; 151: 127131.
  • 68
    Monfort P,Baleux B. Cell cycle characteristics and changes in membrane potential during growth of Escherichia coli as determined by a cyanine fluorescent dye and flow cytometry. J Microbiol Methods 1996; 25: 7986.
  • 69
    Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys (Berlin) 1908; 25: 377445.
  • 70
    Novo D,Perlmutter NG,Hunt RH,Shapiro HM. Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry 1999; 35: 5563.
  • 71
    Jelley EE. Molecular, nematic and crystal states of 1:1′-diethyl-Ψ-cyanine chloride. Nature 1937; 10: 631632.
  • 72
    Struganova IA,Hazell M,Gaitor J,McNally-Carr D,Zivanovic S. Influence of inorganic salts and bases on the J-band in the absorption spectra of water solutions of 1,1′-diethyl-2,2′-cyanine iodide. J Phys Chem A 2003; 107: 26502656.
  • 73
    Von Berlepsch H,Böttcher C,Ouart A,Burger C,Dähne S,Kirstein S. Supramolecular structure of J-aggregates of carbocyanine dyes in solution. J Phys Chem 2000; B104: 52555262.
  • 74
    Sims PJ,Waggoner AS,Wang C-H,Hoffman JF. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 1974; 13: 33153330.
  • 75
    Smiley ST,Reers M,Mottola-Hartshorn C,Lin M,Chen A,Smith TW,Steele GD,Chen LB. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 1991; 88: 36713675.
  • 76
    Reers M,Smith TW,Chen LB. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochem 1991; 30: 44804486.
  • 77
    Zeng Y,Han X,Gross RW. Phospholipid-subclass-specific partitioning of lipophilic ions in membrane-water systems. Biochem J 1999; 338: 651658.
  • 78
    Müller S,Harms H,Bley T. Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol 2010; 21: 100113.
  • 79
    Onyeaka H,Nienow AW,Hewitt CJ. Further studies related to the scale-up of high cell density Escherichia coli fed-batch fermentations: the additional effect of a changing microenvironment when using aqueous ammonia to control pH. Biotechnol Bioeng 2003; 84: 474484.
  • 80
    Hewitt CJ,Onyeaka H,Lewis G,Taylor IW,Nienow AW. A comparison of high cell density fed-batch fermentations involving both induced and non-induced recombinant Escherichia coli under well-mixed small-scale and simulated poorly mixed large-scale conditions. Biotechnol Bioeng 2006; 96: 495505.
  • 81
    Want A,Thomas ORT,Kara B,Liddell J,Hewitt CJ Studies related to antibody fragment (Fab) production in Escherichia coli W3110 fed-batch fermentation processes using multiparameter flow cytometry. Cytometry Part A 2009; 75A: 148154.
  • 82
    Rault A,Bouix M,Béal C. Dynamic analysis of Lactobacillus delbrueckiisubsp. bulgaricus CFL1 physiological characteristics during fermentation. Appl Microbiol Biotechnol 2008; 81: 559570.
  • 83
    Papadimitriou K,Pratsinis H,Nebe-von-Caron G,Kletsas D,Tsakalidou E. Rapid assessment of the physiological status of Streptococcus macedonicus by flow cytometry and fluorescence probes. Int J Food Microbiol 2006; 111: 197205.
  • 84
    Amor KB,Breeuwer P,Verbaarschot P,Rombouts FM,Akkermans ADL,De Vos WM,Abee T. Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead Bifidobacterium cells during bile salt stress. Appl Environ Microbiol 2002; 68: 52095216.
  • 85
    Horobin RW,Stockert JC,Rashid-Dubell F. Fluorescent cationic probes for nuclei of living cells: why are they selective? A quantitative structure-activity relations analysis. Histochem Cell Biol 2006; 126: 165175.
  • 86
    Lahiri R,Randhawa B,Krahenbuhl J. Application of a viability-staining method for Mycobacterium leprae derived from the athymic (nu/nu) mouse foot pad. J Med Microbiol 2005; 54: 235242.
  • 87
    Weeks ME,Nebe-von-Caron G,James DC,Smales CM,Robinson GK. Monitoring changes in nisin susceptibility of Listeria monocytogenesScott A as an indicator of growth phase using FACS. J Microbiol Methods 2006; 66: 4355.
  • 88
    Papadimitriou K,Pratsinis H,Nebe-von-Caron G,Kletsas D,Tsakalidou E. Acid tolerance of Streptococcus macedonicus as assessed by flow cytometry and single-cell sorting. Appl Environ Microbiol 2007; 73: 465476.
  • 89
    Zordan MD,Grafton MMG,Acharya G,Reece LM,Cooper CL,Aronson AI,Park K,Leary JF Detection of pathogenic E. coli O157:H7 by a hybrid microfluidic SPR and molecular imaging cytometry device. Cytometry Part A 2009; 75A: 155162.
  • 90
    Diaper JP,Tither K,Edwards C. Rapid assessment of bacterial viability by flow cytometry. Appl Microbiol Biotechnol 1992; 38: 268272.
  • 91
    Chand S,Lusunzi I,Veal DA,Williams LR,Karuso P. Rapid screening of the antimicrobial activity of extracts and natural products. J Antibiot 1994; 47: 12951304.
  • 92
    Wanandy S,Brouwer M,Liu Q,Mahon A,Cork S,Karuso P,Vemulpad S,Jamie J. Optimisation of the fluorescein diacetate antibacterial assay. J Microbiol Meth 2005; 60: 2130.
  • 93
    Berney M,Vital M,Hülshoff I,Weilenmann H-U,Egli T,Hammes F. Rapid, cultivation-independent assessment of microbial viability in drinking water. Water Res 2008; 42: 40104018.
  • 94
    Porter J,Edwards C,Pickup RW. Rapid assessment of physiological status in Escherichia coli using fluorescent probes. J Appl Bacteriol 1995; 79: 399408.
  • 95
    Na SH,Miyanaga K,Unno H,Tanji Y. The survival response of Escherichia coli K12 in a natural environment. Appl Microbiol Biotechnol 2006; 72: 386392.
  • 96
    Awais R,Fukudomi H,Miyanaga K,Unno H,Tanji Y. A recombinant bacteriophage-based assay for the discriminative detection of culturable and viable but nonculturable Escherichia coli O157:H7. Biotechnol Prog 2006; 22: 853859.
  • 97
    Jung WK,Koo HC,Kim KW,Shin S,Kim SH,Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 2008; 74: 21712178.
  • 98
    Tsuji T,Kawasaki Y,Takeshima S,Sekiya T,Tanaka S. A new fluorescence staining assay for visualizing living microorganisms in soil. Appl Environ Microbiol 1995; 61: 34153421.
  • 99
    Nibbering PH,Ravensbergen E,Welling MM,Van Berkel LA,Van Berkel PHC,Pauwels EKJ,Nuijens HJ. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect Immun 2001; 69: 14691476.
  • 100
    Berney M,Weilenmann H-U,Egli T. Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS). Microbiol 2006; 152: 17191729.
  • 101
    Saint-Ruf C,Cordier C,Mégret J,Matic I. Reliable detection of dead microbial cells using fluorescent hydrazides. Appl Environ Microbiol 2010; 76: 16741678.
  • 102
    Dumas E,Gao C,Suffern D,Bradforth SE,Dimitrijevic NM,Nadeau JL. Interfacial charge transfer between CdTe quantum dots and gram negative vs gram positive bacteria. Environ Sci Technol 2010; 44: 14641470.
  • 103
    Haidinger W,Szostak MP,Jechlinger W,Lubitz W. Online monitoring of Escherichia coli ghost production. Appl Environ Microbiol 2003; 69: 468474.
  • 104
    Shi J,Ahmed D,Mao X,Lin S-CS,Lawit A,Huang TJ. Acoustic tweezers: Patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 2009; 9: 28613024.
  • 105
    Chorny A,Anderson P,Gonzalez-Rey E,Delgado M. Ghrelin protects against experimental sepsis by inhibiting high-mobility group box 1 release and by killing bacteria. J Immunol 2008; 180: 83698377.
  • 106
    Comas J,Vives-Rego J. Assessment of the effects of gramicidin, formaldehyde, and surfactants on Escherichia coli by flow cytometry using nucleic acid and membrane potential dyes. Cytometry 1997; 29: 5864.
  • 107
    Gauthier C,St-Pierre Y,Villemur R. Rapid antimicrobial susceptibility testing of urinary tract isolates and samples by flow cytometry. J Med Microbiol 2002; 51: 192200.
  • 108
    Kohanski MA,Dwyer DJ,Wierzbowski J,Cottarel G,Collins JJ. Mistranslation of membrane proteins and two-component system activation trigger aminoglycoside-mediated oxidative stress and cell death. Cell 2008; 135: 679690.
  • 109
    Nuding S,Fellermann K,Wehkamp J,Mueller HAG,Stange EF. A flow cytometric assay to monitor antimicrobial activity of defensins and cationic tissue extracts. J Microbiol Methods 2006; 65: 335345.
  • 110
    Nuding S,Zabel LT,Enders C,Porter E,Fellermann K,Wehkamp J,Mueller HAG,Stange EF. Antibacterial activity of human defensins on anaerobic intestinal bacterial species: A major role of HBD-3. Microbes Infect 2009; 11: 384393.
  • 111
    Pag U,Oedenkoven M,Sass V,Shai Y,Shamova O,Antcheva N,Tossi A,Sahl H-G. Analysis of in vitro activities and modes of action of synthetic antimicrobial peptides derived from an a-helical ‘sequence template’. J Antimicrob Chemother 2008; 61: 341352.
  • 112
    Wickens HJ,Pinney RJ,Mason DJ,Gant VA. Flow cytometric investigation of filamentation, membrane patency, and membrane potential in Escherichia coli following ciprofloxacin exposure. Antimicrob Agents Chemother 2000; 44: 682687.
  • 113
    Yang TH,Pan JG,Seo YS,Rhee JS. Use of Pseudomonas putida EstA as an anchoring motif for display of a periplasmic enzyme on the surface of Escherichia coli. Appl Environ Microbiol 2004; 70: 69686976.
  • 114
    Hewitt CJ,Nebe-von-Caron G,Axelsson B,McFarlane CM,Nienow AW. Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry: effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol Bioeng 2000; 70: 381390.
  • 115
    Hewitt CJ,Gerhard Nebe-Von-Caron G. An industrial application of multiparameter flow cytometry: assessment of cell physiological state and its application to the study of microbial fermentations. Cytometry 2001; 44: 179187.
  • 116
    Barbesti S,Citterio S,Labra M,Baroni MD,Neri MG,Sgorbati S. Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria. Cytometry 2000; 40: 214218.
  • 117
    Williams SC,Hong Y,Danavall DCA,Howard-Jones MH,Gibson D,Frischer ME,Verity PG. Distinguishing between living and nonliving bacteria: evaluation of the vital stain propidium iodide and its combined use with molecular probes in aquatic samples. J Microbiol Methods 1998; 32: 225236.
  • 118
    Baatout S,Leys N,Hendrickx L,Dams A,Mergeay M. Physiological changes induced in bacteria following pH stress as a model for space research. Acta Astronaut 2007; 60: 451459.
  • 119
    Cox SD,Mann CM,Markham JL,Bell HC,Gustafson JE,Warmington JR,Wyllie SG. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 2000; 88: 170175.
  • 120
    Davies BW,Kohanski MA,Simmons LA,Winkler JA,Collins JJ,Walker GC. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Mol Cell 2009; 36: 845860.
  • 121
    Lyon D,Alvarez PJ. Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 2008; 42: 81278132.
  • 122
    Pietschmann S,Hoffmann K,Voget M,Pison U. Synergistic effects of Miconazole and Polymyxin B on microbial pathogens. Vet Res Commun 2009; 33: 489505.
  • 123
    Virto R,Manas P,Álvarez I,Condon S,Raso J. Membrane damage and microbial inactivation by chlorine in the absence and presence of a chlorine-demanding substrate. Appl Environ Microbiol 2005; 71: 50225028.
  • 124
    Zorko M,Jerala R. Alexidine and chlorhexidine bind to lipopolysaccharide and lipoteichoic acid and prevent cell activation by antibiotics. J Antimicrob Chemother 2008; 62: 730737.
  • 125
    Soejima T,Iida K,Qin T,Taniai H,Yoshida S. Discrimination of live, anti-tuberculosis agent-injured, and dead Mycobacterium tuberculosis using flow cytometry. FEMS Microbiol Lett 2009; 294: 7481.
  • 126
    Shapiro HM. Flow cytometry of bacterial membrane potential and permeability. In: ChampneyWS, editor. Methods in molecular medicine. Vol. 142: New antibiotic targets. Humana Press Inc: Totowa, NJ; 2008. p 175186.
  • 127
    Rao SPS,Alonso S,Rand L,Dick T,Pethe K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2008; 105: 1194511950.
  • 128
    Anes E,Peyron P,Staali L,Jordao L,Gutierrez MG,Kress H,Hagedorn M,Maridonneau-Parini I,Skinner MA,Wildeman AG,Kalamidas SA,Kuehnel MK,Griffiths G. Dynamic life and death interactions between Mycobacterium smegmatis and J774 macrophages. Cell Microbiol 2006; 8: 939960.
  • 129
    Anuchin AM,Mulyukin AL,Suzina NE,Duda VI,El-Registan GI,Kaprelyants AS. Dormant forms of Mycobacterium smegmatis with distinct morphology. Microbiology 2009; 155: 10711079.
  • 130
    Jordao L,Bleck CKE,Mayorga L,Griffiths G,Anes E. On the killing of mycobacteria by macrophages. Cell Microbiol 2008; 10: 529548.
  • 131
    Shleeva MO,Bagramyan K,Telkov MV,Mukamolova GV,Young M,Kell DB,Kaprelyants AS. Formation and resuscitation of ‘nonculturable’ cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 2002; 148: 15811591.
  • 132
    Shleeva M,Mukamolova GV,Young M,Williams HD,Kaprelyants AS. Formation of ‘non-culturable’ cells of Mycobacterium smegmatis in stationary phase in response to growth under suboptimal conditions and their Rpf-mediated resuscitation. Microbiology 2004; 150: 16871697.