Literature Cited

  • 1
    Ondetti MA,Cushman DW. Enzymes of the renin-angiotensin system and their inhibitors. Ann Rev Biochem 1982; 51: 283308.
  • 2
    Smith CG,Vane JR. The discovery of captopril. FASEB J 2003; 17: 788789.
  • 3
    Ferreira SH,Rocha e Silva M. Potentiation of bradykinin and eledoisin by BPF (bradykinin potentiating factor) from Bothrops jararaca venom. Experientia 1965; 21: 347349.
  • 4
    Ferreira SH,Bartelt DC,Greene LJ. Isolation of bradykinin potentiating peptides from Bothrops jararaca venom. Biochemistry 1970; 13: 25832593.
  • 5
    Collier JG,Robinson BF,Vane JR. Reduction of pressor effects of angiotensin I in man by synthetic nonapeptide (B.P.P. 9a or SQ 20,881) which inhibits converting enzyme. Lancet 1973; 1: 7274.
  • 6
    Johnson JG,Black WD,Vukovich RA,Hatch FEJr,Friedman BI,Blackwell CF,Shenouda AN,Share L,Shade RE,Acchiardo SR,Muirhead EE. Treatment of patients with severe hypertension by inhibition of converting enzyme. Clin Sci Mol Med 1975; 48: 53s56s.
  • 7
    Hayashi MA,Camargo AC. The bradykinin-potentiating peptides from venom gland and brain of Bothrops jararaca contain highly site specific inhibitors of the somatic angiotensin-converting enzyme. Toxicon 2005; 45: 11631170.
  • 8
    Ianzer D,Santos RA,Etelvino GM,Xavier CH,de Almeida Santos J,Mendes EP,Machado LT,Prezoto BC,Dive V,de Camargo AC. Do the cardiovascular effects of angiotensin-converting enzyme (ACE) I involve ACE independent mechanisms? New insights from proline-rich peptides of Bothrops jararaca. J Pharmacol Exp Ther 2007; 322: 795805.
  • 9
    Lameu C,Hayashi MA,Guerreiro JR,Oliveira EF,Lebrun I,Pontieri V,Morais KL,Camargo AC,Ulrich H. The central nervous system as target for antihypertensive actions of a proline-rich peptide from Bothrops jararaca venom. Cytometry Part A 2010; 77A: 220230.
  • 10
    Ianzer D,Konno K,Marques-Porto R,Portaro FCV,Stöcklin R,Martins de Camargo AC,Pimenta DC. Identification of five new bradykinin potentiating peptides (Bj-PRO-7As) from Bothrops jararaca crude venom by using electrospray ionization tandem mass spectrometry after a two-step liquid chromatography. Peptides 2004; 25: 10851092.
  • 11
    Hayashi MA,Murbach AF,Ianzer D,Portaro FC,Prezoto BC,Fernandes BL,Silveira PF,Silva CA,Pires RS,Britto LR,Dive V,Camargo AC. The C-type natriuretic peptide precursor of snake brain contains highly specific inhibitors of the angiotensin-converting enzyme. J Neurochem 2003; 85: 969977.
  • 12
    Murayama N,Hayashi MA,Ohi H,Ferreira LA,Fernades BL,Yamane T,Camargo ACM. Cloning and sequence analysis of a Bothrops jararaca cDNA encoding a precursor of seven bradykinin-potentiating peptides and a C-type natriuretic peptide. Proc Natl Acad Sci U S A 1997; 94: 11891193.
  • 13
    Lauder JM. Neurotransmitters as growth regulatory signals: Role of receptors and second messengers. Trends Neurosci 1993; 16: 233240.
  • 14
    Liu J,Morrow AL,Devaud L,Grayson DR,Lauder JM. GABAA receptors mediate trophic effects of GABA on embryonic brainstem monoamine neurons in vitro. J Neurosci 1997; 17: 24202428.
  • 15
    Trujillo CA,Schwindt TT,Martins AH,Alves JM,Mello LE,Ulrich H. Novel perspectives of neural stem cell differentiation: From neurotransmitters to therapeutics. Cytometry Part A 2009; 75A: 3853.
  • 16
    Villard E,Soubrier F. Molecular biology and genetics of the angiotensin-I-converting enzyme: Potential implications in cardiovascular diseases. Cardiovasc Res 1996; 32: 9991007.
  • 17
    Kalaria RN,Homayoun P,Whitehouse PJ. Nicotinic cholinergic receptors associated with mammalian cerebral vessels. J Auton Nerv Syst 1994; 49: 37.
  • 18
    Hawkins BT,Egleton RD,Davis TP. Modulation of cerebral microvascular permeability by endothelial nicotinic acetylcholine receptors. Am J Physiol Heart Circ Physiol 2005; 289: 212219.
  • 19
    Nery AA,Trujillo CA,Lameu C,Konno K,Oliveira V,Camargo AC,Ulrich H,Hayashi MA. A novel physiological property of snake bradykinin-potentiating peptides-reversion of MK-801 inhibition of nicotinic acetylcholine receptors. Peptides 2008; 29: 17081715.
  • 20
    Furchgott RF,Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373376.
  • 21
    Bruggmann D,Lips KS,Pfeil U,Haberberger RV,Kummer W. Multiple nicotinic acetylcholine receptor alpha-subunits are expressed in the arterial system of the rat. Histochem Cell Biol 2002; 118: 441447.
  • 22
    Poller U,Nedelka G,Radke J,Pönicke K,Brodde OE. Age-dependent changes in cardiac muscarinic receptor function in healthy volunteers. J Am Coll Cardiol 1997; 29: 187193.
  • 23
    Lazartigues E,Brefel-Courbon C,Tran MA,Montastruc JL,Rascol O. Spontaneously hypertensive rats cholinergic hyper-responsiveness: Central and peripheral pharmacological mechanisms. Br J Pharmacol 1999; 127: 16571665.
  • 24
    Hardouin SN,Richmond KN,Zimmerman A,Hamilton SE,Feigl EO,Nathanson NM. Altered cardiovascular responses in mice lacking the M(1) muscarinic acetylcholine receptor. J Pharmacol Exp Ther 2002; 301: 129137.
  • 25
    Roux S,Zékri E,Rousseau B,Paternostre M,Cintrat JC,Fay N. Elimination and exchange of trifluoroacetate counter-ion from cationic peptides: A critical evaluation of different approaches. J Peptide Sci 2008; 14: 354359.
  • 26
    Martins AH,Resende RR,Majumder P,Faria M,Casarini DE,Tarnok A,Colli W,Pesquero JB,Ulrich H. Neuronal differentiation of P19 embryonal carcinoma cells modulates kinin B2 receptor gene expression and function. J Biol Chem 2005; 280: 1957619586.
  • 27
    Sykes DA,Dowling MR,Charlton SJ. Exploring the mechanism of agonist efficacy: A relationship between efficacy and agonist dissociation rate at the muscarinic M3 receptor. Mol Pharmacol 2009; 76: 543551.
  • 28
    Martins AH,Alves JM,Trujillo CA,Schwindt TT,Barnabé GF,Motta FL,Guimaraes AO,Casarini DE,Mello LE,Pesquero JB,Ulrich H. Kinin-B2 receptor expression and activity during differentiation of embryonic rat neurospheres. Cytometry Part A 2008; 73A: 361368.
  • 29
    Stewart JM,Ferreira SH,Greene LJ. Bradykinin potentiating peptide PCA-Lys-Trp-Ala-Pro: An inhibitor of the pulmonary inactivation of bradykinin and conversion of angiotensin I to II. Biochem Pharmacol 1971; 20: 15571567.
  • 30
    Black CE,Huang N,Neligan PC,Levine RH,Lipa JE,Lintlop S,Forrest CR,Pang CY. Effect of nicotine on vasoconstrictor and vasodilator responses in human skin vasculature. Am J Physiol Regul Integr Comp Physiol 2001; 281: 10971104.
  • 31
    Nery AA,Trujillo CA,Lameu C,Konno K,Oliveira V,Camargo ACM,Ulrich H,Hayashi MAF. Nicotinic acetylcholine receptors modulation by a snake toxin. J Mol Neurosci 2010; 40: 252254.
  • 32
    Resende RR,Gomes KN,Adhikari A,Britto LR,Ulrich H. Mechanism of acetylcholine-induced calcium signaling during neuronal differentiation of P19 embryonal carcinoma cells in vitro. Cell Calcium 2008; 43: 107121.
  • 33
    Parnas D,Heldman E,Branski L,Feinstein N,Linial M. Expression and localization of muscarinic receptors in P19-derived neurons. J Mol Neurosci 1998; 10: 1729.
  • 34
    Racke K,Matthiesen S. The airway cholinergic system: Physiology and pharmacology. Pulm Pharmacol Ther 2004; 17: 181198.
  • 35
    Bartus RT. On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 2000; 163: 495529.
  • 36
    Terry AVJr,Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 2003; 306: 821827.
  • 37
    Roman GC. Cholinergic dysfunction in vascular dementia. Curr Psychiatry Rep 2005; 7: 1826.
  • 38
    Pan ZZ,Williams JT. Muscarine hyperpolarizes a subpopulation of neurons by activating an M2 muscarinic receptor in rat nucleus raphe magnus in vitro. J Neurosci 1994; 14: 13321338.
  • 39
    Tárnok A,Ulrich H. Characterization of pressure-induced calcium response in neuronal cell lines. Cytometry 2001; 43: 175181.
  • 40
    Cushman DW,Cheung HS,Sabo EF,Ondetti MA. Design of potent competitive inhibitors of angiotensin-converting enzyme. Carbosyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 1977; 16: 54845491.
  • 41
    Cushman DW,Ondetti MA. Design of angiotensin converting enzyme inhibitors. Nat Med 1999; 5: 11101112.
  • 42
    Mullol J,Baraniuk JN,Logun C,Mérida M,Hausfeld J,Shelhamer JH,Kaliner MA. M1 and M3 muscarinic antagonists inhibit human nasal glandular secretion in vitro. J Appl Physiol 1992; 73: 20692073.
  • 43
    Kunitake A,Kunitake T,Stewart M. Differential modulation by carbachol of four separate excitatory afferent systems to the rat subiculum in vitro. Hippocampus 2004; 14: 986999.
  • 44
    Fisher A,Pittel Z,Haring R,Bar-Ner N,Kliger-Spatz M,Natan N,Egozi I,Sonego H,Marcovitch I,Brandeis R. M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer's disease: Implications in future therapy. J Mol Neurosci 2003; 20: 349356.
  • 45
    Heinrich JN,Butera JA,Carrick T,Kramer A,Kowal D,Lock T,Marquis KL,Pausch MH,Popiolek M,Sun SC,Tseng E,Uveges AJ,Mayer SC. Pharmacological comparison of muscarinic ligands: Historical versus more recent muscarinic M1-preferring receptor agonists. Eur J Pharmacol 2009; 605: 5356.
  • 46
    Sadashiva CT,Chandra JN,Kavitha CV,Thimmegowda A,Subhash MN,Rangappa KS. Synthesis and pharmacological evaluation of novel N-alkyl/aryl substituted thiazolidinone arecoline analogues as muscarinic receptor 1 agonist in Alzheimer's dementia models. Eur J Med Chem 2009; 44: 48484854.
  • 47
    Budzik B,Garzya V,Shi D,Foley JJ,Rivero RA,Langmead CJ,Watson J,Wu Z,Forbes IT,Jin J. 2′ Biaryl amides as novel and subtype selective M1 agonists. Part I: Identification, synthesis, and initial SAR. Bioorg Med Chem Lett 2010; 20: 35403544.
  • 48
    Eglen RM. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 2006; 26: 219233.
  • 49
    Davis AA,Fritz JJ,Wess J,Lah JJ,Levey AI. Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. J Neurosci 2010; 30: 41904196.