SEARCH

SEARCH BY CITATION

Literature Cited

  • 1
    Bocsi J,Tárnok A. Toward automation of flow data analysis. Cytometry Part A 2008; 73A: 679680.
  • 2
    Lugli E,Roederer M,Cossarizza A. Good cell, bad cell: flow cytometry reveals t-cell subsets important in hiv disease. Cytometry Part A 2010; 77A: 614622.
  • 3
    Chattopadhyay P,Roederer M. Data analysis in flow cytometry: The future just started. Cytometry Part A 2010; 77A: 705713.
  • 4
    Satoh C,Dan K,Yamashita T,Jo R,Tamura H,Ogata K. Flow cytometric parameters with little interexaminer variability for diagnosing low-grade myelodysplastic syndromes. Leukemia Research 2008; 32: 699707.
  • 5
    Gratama J,Kraan J,Keeney M,Granger V,Barnett D. Reduction of variation in T-cell subset enumeration among 55 laboratories using single-platform, three or four-color flow cytometry based on CD45 and SSC-based gating of lymphocytes. Cytometry Part B: Clinical Cytometry 2002; 50: 92101.
  • 6
    Van Blerk M,Bernier M,Bossuyt X,Chatelain BD,Hautcourt J,Demanet C,Kestens L,Van Bockstaele D,Crucitti T,Libeer J. National external quality assessment scheme for lymphocyte immunophenotyping in Belgium. Clinical Chemistry and Laboratory Medicine 2003; 41: 323330.
  • 7
    Hahne F,Khodabakhshi A,Bashashati A,Wong C,Gascoyne R,Weng A,Seyfert-Margolis V,Bourcier K,Asare A,Lumley T, Gentleman R, Brinkman R. Per-channel basis normalization methods for flow cytometry data. Cytometry Part A 2009; 77A: 121131.
  • 8
    Bashashati A,Brinkman R. A Survey of Flow Cytometry Data Analysis Methods. Adv Bioinformatics 2009; 584603
  • 9
    Lo K,Brinkman R,Gottardo R. Automated gating of flow cytometry data via robust model-based clustering. Cytometry Part A 2008; 73A: 321332.
  • 10
    Finak G,Bashasharti A,Brinkmann R,Gottardo R. Merging mixture model components for improved cell population identification in high throughput flow cytometry data. Advances in Bioinformatics 2009; 100.
  • 11
    Baudry J,Raftery A,Celeux G,Lo K,Gottardo R. Combining mixture components for clustering. Journal of Computational and Graphical Statistics 2010;19:332–353.
  • 12
    Pyne S,Hu X,Wang K,Rossin E,Lin T,Maier L,Baecher-Allan C,McLachlan G,Tamayo P,Hafler D. Automated high-dimensional flow cytometric data analysis. Proceedings of the National Academy of Sciences 2009; 106: 8519.
  • 13
    Naumann U,Wand M. Automation in high-content flow cytometry screening. Cytometry Part A 2009; 75A: 789797.
  • 14
    Zare H,Shooshtari P,Gupta A,Brinkman R. Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinformatics 2010; 11: 403.
  • 15
    Murphy R. Automated identification of subpopulations in flow cytometric list mode data using cluster analysis. Cytometry Part A 2005; 6A: 302309.
  • 16
    Pelleg D,Moore A. X-means: Extending K-means with efficient estimation of the number of clusters. In Proceedings of the Seventeenth International Conference on Machine Learning table of contents, San Francisco, CA: Morgan Kaufmann Publishers Inc, 2000. p 727734.
  • 17
    Hamerly G,Elkan C. Learning the K in k-means. Advances in Neural Information Processing Systems 2004; 17: 281288.
  • 18
    Kaufman L,Rousseeuw P. Finding groups in data: an introduction to cluster analysis. New York: Wiley; 1990.
  • 19
    Duong T,Cowling A,Koch I,Wand M. Feature significance for multivariate kerneldensity estimation. Computational Statistics and Data Analysis 2008; 52: 42254242.
  • 20
    Scott D. Multivariate density estimation: theory, practice, and visualization. New York: Wiley-Interscience; 1992.
  • 21
    Rosenberg A,Hirschberg J. V-measure: A conditional entropy-based external cluster evaluation measure. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, (EMNLP-CoNLL); Prague, Czech Republic. 2007. p 410420.
  • 22
    Aghaeepour N,Khodabakhshi AH,Brinkman RR. An empirical study of cluster evaluation metrics using flow cytometry data. Clustering Theory Workshop, Neural Information Processing Systems (NIPS). Whistler, British Columbia, Canada, December 2009. http://clusteringtheory.org/papers/empiricalmetrics.pdf.
  • 23
    Brinkman RR,Gasparetto M,Lee SJ,Ribickas AJ,Perkins J,Janssen W,Smiley R,Smith C. High-content flow cytometry and temporal data analysis for defining a cellular signature of graft-versus-host disease. Biology of blood and marrow transplantation. Journal of the American Society for Blood and Marrow Transplantation 2007; 13: 691700.
  • 24
    Igel C,Suttorp T,Hansen N. A computational efficient covariance matrix update and a (1+ 1)-CMA for evolution strategies. In Proceedings of the 8th annual conference on Genetic and Evolutionary Computation, GECCO ’06. New York: ACM. ISBN 1-59593-186-4; 2006: p 453–460.
  • 25
    Aghaeepour N. FlowMeans package at Bioconductor, Available at: http://www.bioconductor.org/packages/devel/bioc/html/flowMeans.html. 2010.
  • 26
    Gentleman RC,Carey VJ,Bates DM,Bolstad B,Dettling M,Dudoit S,Ellis B,Gautier L,Ge Y,Gentry J,Hornik K,Hothorn T,Huber W,Iacus S,Irizarry R,Leisch F,Li C,Maechler M,Rossini AJ,Sawitzki G,Smith C,Smyth G,Tierney L,Yang JYH,Zhang J. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology 2004; 5: R80.