Literature Cited

  • 1
    Shapiro HM. Practical Flow Cytometry, 4th ed. New York: Wiley-Liss; 2003.
  • 2
    Robinson JP. Reference Books in Cytometry, Purdue University Cytometry Laboratories. Available at: Accessed on August 11, 2011.
  • 3
    Sack U,Tárnok A,Rothe G, editors. Cellular Diagnostics: Basic Principles, Methods and Clinical Applications of Flow Cytometry. Basel, Freiburg, Paris: Karger; 2008.
  • 4
    Ormerod MG. Flow Cytometry-A Basic Introduction, De Novo software; 2008; the electronic version of the book:; page last modified 08:42, August 12, 2010 by Ormerod MG; August 11, 2011.
  • 5
    Tuchin VV, editor. Advanced Optical Flow Cytometry: Methods and Disease Diagnoses. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011.
  • 6
    Watson DA,Gaskill DF,Brown LO,Doorn SK,Nolan JP. Spectral measurements of large particles by flow cytometry. Cytometry Part A 2009; 75A: 460464.
  • 7
    Nolan JP,Sebba DS. Surface-enhanced Raman scattering (SERS) cytometry. Methods Cell Biol 2011; 102: 515532.
  • 8
    Goddard G,Martin JC,Graves SW,Kaduchak G. Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer. Cytometry Part A 2006; 69A: 6674.
  • 9
    Abkarian M,Faivre M,Stone HA. High-speed microfluidic differential manometer for cellular-scale hydrodynamics. Proc Natl Acad Sci USA 2006; 103: 538542.
  • 10
    Cheung KC,Di Berardino M,Schade-Kampmann G,Hebeisen M,Pierzchalski A,Bocsi J,Mittag A,Tárnok A. Microfluidic impedance-based flow cytometry. Cytometry Part A 2010; 77A: 648666.
  • 11
    Takao M,Takeda K. Enumeration, characterization, and collection of intact circulating tumor cells by cross contamination-free flow cytometry. Cytometry Part A 2011; 79A: 107117.
  • 12
    Frankowski M,Bock N,Kummrow A,Schädel-Ebner S,Schmidt M,Tuchscheerer A,Neukammer J. A microflow cytometer exploited for the immunological differentiation of leukocytes. Cytometry Part A 2011; 79A: 613624.
  • 13
    Meade SO,Godin J,Chen C-H,Cho SH,Tsai FS,Qiao W,Lo Y-H. Microfluidic flow cytometry: Advancements toward compact, integrated systems. In: Tuchin VV, editor. Advanced Optical Cytometry: Methods and Disease Diagnoses. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. pp 273310.
  • 14
    Swalwell JE,Petersen TW,van den Engh G. Virtual-core flow cytometry. Cytometry Part A 2009; 75A: 960965.
  • 15
    Galanzha EI,Shashkov EV,Kelly T,Kim J-W,Yang L,Zharov VP. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnology 2009; 4: 855860.
  • 16
    Morgan SP,Stockford IM. Instrumentation for in vivo flow cytometry – a sickle cell anemia case study. In: Tuchin VV, editor. Advanced Optical Cytometry: Methods and Disease Diagnoses. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. pp 433461.
  • 17
    Morgan SP. Can new optical techniques for in vivo imaging and flow cytometry of the microcirculation benefit sickle cell disease research? Cytometry Part A 2011; 79A: 766774.
  • 18
    Tuchin VV,Tárnok A,Zharov VP. Towards in vivo flow cytometry. J Biophoton 2009; 2: 457547.
  • 19
    Zharov VP,Galanzha EI,Tuchin VV. Photothermal imaging of moving cells in lymph and blood flow in vivo. Proc SPIE 2004; 5320: 256263.
  • 20
    Zharov VP,Galanzha EI,Tuchin VV. Photothermal image flow cytometry in vivo. Opt Lett 2005; 30: 628630.
  • 21
    Zharov VP,Galanzha EI,Tuchin VV. Integrated photothermal flow cytometry in vivo. J Biomed Opt 2005; 10: 51502.
  • 22
    Zharov VP,Galanzha EI,Tuchin VV. In vivo photothermal flow cytometry: Imaging and detection of cells in blood and lymph flow (review/prospect). J Cell Biochem 2006; 97: 916932.
  • 23
    Zharov VP,Galanzha EI,Shashkov EV,Khlebtsov NG,Tuchin VV. In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents. Opt Lett 2006; 31: 36233625.
  • 24
    Zharov VP,Galanzha EI,Tuchin VV. Photothermal flow cytometry in vitro for detection and imaging of individual moving cells. Cytometry Part A 2007; 71A: 191206.
  • 25
    Zharov VP,Galanzha EI,Shashkov EV,Kim J-W,Khlebtsov NG,Tuchin VV. Photoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. J Biomed Opt 2007; 12: 0551503.
  • 26
    Galanzha EI,Shashkov EV,Tuchin VV,Zharov VP. In vivo multispectral multiparameter photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes. Cytometry Part A 2008; 73A: 884894.
  • 27
    Olszewski WL,Tárnok A. Photoacoustic listening of cells in lymphatics: Research art or novel clinical noninvasive lymph test. Cytometry Part A 2008; 73A: 11111113.
  • 28
    Biris AS,Galanzha EI,Li Z,Mahmood M,Xu Y,Zharov VP. In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues. J Biomed Opt 2009; 14: 021006.
  • 29
    Galanzha EI,Shashkov EV,Spring P,Suen JY,Zharov VP. In vivo noninvasive label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res 2009; 69: 79267934.
  • 30
    Galanzha EI,Kokoska MS,Shashkov EV,Kim J-W,Tuchin VV,Zharov VP. In vivo fiber-based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles. J Biophotonics 2009; 2: 528539.
  • 31
    Galanzha EI,Kim J-W,Zharov VP. Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in-vivo detection and killing of circulating cancer stem cells. J Biophotonics 2009; 2: 725735.
  • 32
    Kim J-W,Galanzha EI,Shashkov EV,Moon H-M,Zharov VP. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnology 2009; 4: 688694.
  • 33
    Shashkov EV,Galanzha EI,Zharov VP. Photothermal and photoacoustic Raman cytometry in vitro and in vivo. Opt Exp 2010; 18: 69296944.
  • 34
    Nedosekin DA,Sarimollaoglu M,Shashkov EV,Galanzha EI,Zharov VP. Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser. Opt Exp 2010; 18: 86058620.
  • 35
    Tuchin VV,Galanzha EI,Zharov VP. In vivo photothermal and photoacoustic flow cytometry. In: Tuchin VV, editor. Advanced Optical Cytometry: Methods and Disease Diagnoses. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. pp 501571.
  • 36
    De la Zerda A,Kim JW,Galanzha EI,Gambhir SS,Zharov VP. Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test, and photothermal theranostics. Contrast Media Mol Imaging (in press).
  • 37
    Nedosekin DA,Khodakovskaya MV,Biris AS,Wang D,Xu Y,Villagarcia H,Galanzha EI,Zharov VP. In vivo plant flow cytometry: A first proof-of-concept. Cytometry Part A 2011; 79A: 855865.
  • 38
    Galanzha EI,Zharov VP. Photoacoustic and photothermal flow cytometry for monitoring mutiple blood rheology parameters. Cytometry Part A 2011; 79A: 746757.
  • 39
    Galanzha EI,Sarimollaoglu M,Nedosekin DA,Keyrouz SG,Mehta JL,Zharov VP. In vivo cytometry of circulating clots using negative photothermal and photoacoustic contrasts. Cytometry Part A 2011; 79A: 814824.
  • 40
    Nedosekin DA,Sarimollaoglu M,Ye J-H,Galanzha EI,Zharov VP. In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers. Cytometry Part A 2011; 79A: 825833.
  • 41
    Proskurnin MA, Zhidkova TV,Volkov DS,Sarimollaoglu M,Galanzha EI,Mock D,Nedosekin DA,Zharov VP. In vivo multispectral photoacoustic and photothermal flow cytometry with multicolor dyes: A potential for real-time assessment of circulation, dye-cell interaction, and blood volume. Cytometry Part A 2011; 79A: 834847.
  • 42
    Sarimollaoglu M,Nedosekin DA,Simanovsky Y,Galanzha EI,Zharov VP. In vivo photoacoustic time-of-flight velocity measurement of single cells and nanoparticles. Opt Lett (in press).
  • 43
    Novak J,Georgakoudi I,Wei X,Prossin A,Lin CP. An in vivo flow cytometer for real-time detection and quantification of circulating cells. Opt Lett 2004; 29: 7779.
  • 44
    Georgakoudi I,Solban N,Novak J,Rice WL,Hasan T,Lin CP. In vivo flow cytometry: A new method for the quantification of circulating tumor cells. Cancer Res 2004; 64: 50445047.
  • 45
    Sipkins DA,Wei X,Wu JW,Runnels JM,Côté D,Means TK,Luster AD,Scadden DT,Lin CP. In vivo imaging of specialized bone marrow endothelial microdomains for tumor engraftment. Nature 2005; 435: 969973.
  • 46
    Wei X,Sipkins DA,Pitsillides CM,Novak J,Georgakoudi I,Lin CP. Real-time detection of circulating apoptotics cells by in vivo flow cytometry. Mol Imaging 2005; 4: 415416.
  • 47
    Lee H,Alt C,Pitsillides C,Puoris'haag M,Lin CP. In vivo imaging flow cytometer. Opt Exp 2006; 14: 77897800.
  • 48
    Alt C,Veilleux I,Lee H,Pitsillides CM,Côté D,Lin CP. Retinal flow cytometer. Opt Lett 2007; 32: 34503452.
  • 49
    Boutrus S,Greiner C,Hwu D,Chan M,Kuperwasser C,Lin CP,Georgakoudi I. Portable two-color in vivo flow cytometer for real-time detection of fluorescently-labeled circulating cells. J Biomed Opt 2007; 12: 020507.
  • 50
    Alsayed Y,Ngo H,Runnels J,Leleu X,Singha OK,Pitsillides CM,Spencer JA,Kimlinger T,Ghobrial JM,Jia X, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12) dependent migration and homing in Multiple Myeloma. Blood 2007; 109: 27082717.
  • 51
    Leleu X,Jia X,Runnels J,Ngo HT,Moreau AS,Farag M,Spencer JA,Pitsillides CM,Hatjiharissi E,Roccaro A, et al. The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood 2007; 110: 44174426.
  • 52
    Azab AK,Runnels JM,Pitsillides C,Moreau AS,Azab F,Leleu XP,Xiaoying J,Wright R,Ospina B,Carlson AL, et al. The CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 2009; 113: 43414351.
  • 53
    Azab AK,Azab F,Blotta S,Pitsillides CM,Thompson B,Runnels JM,Roccaro AM,Ngo HT,Melhem MR,Sacco A, et al. RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 2009; 114: 619629.
  • 54
    Roccaro AM,Sacco A,Husu EN,Pitsillides C,Vesole S,Azab AK,Azab F,Melhem M,Ngo HT,Quang P, et al. Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia. Blood 2010; 115: 559569.
  • 55
    Fan Z,Spencer JA,Lu Y,Pitsillides CM,Singh G,Kim P,Yun SH,Toxavidis V,Strom TB,Lin CP, et al. In vivo tracking of “color-coded” effector, natural and induced regulatory T cells in the allograft response. Nat Med 2010; 16: 718722.
  • 56
    Runnels JM,Carlson AL,Pitsillides C,Thompson B,Wu J,Spencer JA,Kohler JMJ,Azab AK,Moreau AS,Rodig SJ, et al. Characterization of multiple myeloma engraftment, growth and response to therapy using complementary in vivo optical technologies. J Biomed Opt 2011; 16: 011006.
  • 57
    Pitsillides CM,Runnels JM,Spencer JA, Wu MX,Lin CP. Cell labeling approaches for fluorescence-based in vivo flow cytometry. Cytometry Part A 2011; 79A: 758765.
  • 58
    Becker MD,Garman K,Whitcup SM,Planck SR,Rosenbaum JT. Inhibition of leukocyte sticking and infiltration, but not rolling, by antibodies to ICAM-1 and LFA-1 in murine endotoxin-induced uveitis. Invest Ophthalmol Vis Sci 2001; 42: 25632566.
  • 59
    Paques M,Tadayoni R,Sercombe R,Laurent P,Genevois O,Gaudric A,Vicaut E. Structural and hemodynamic analysis of the mouse retinal microcirculation. Invest Ophthalmol Vis Sci 2003; 44: 49604967.
  • 60
    Laemmel E,Genet M,Le Goualher G,Perchant A,Le Gargasson JF,Vicaut E. Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy. J Vasc Res 2004; 41: 400411.
  • 61
    Novak J,Puoris'haag M. Two-color, double-slit in vivo flow cytometer. Opt Lett 2007; 32: 29932995.
  • 62
    Li Y,Guo J,Wang C,Fan Z,Liu G,Wang C,Gu Z,Damm D,Mosig A,Wei X. Circulation times of prostate cancer and hepatocellular carcinoma cells by in vivo flow cytometry. Cytometry Part A 2011; 79A: 848854.
  • 63
    Greiner C,Georgakoudi I. Advances in fluorescence-based in vivo flow cytometry for cancer applications. In: Tuchin VV, editor. Advanced optical cytometry: Methods and disease diagnoses. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. pp 463500.
  • 64
    Hwu D,Boutrus S,Greiner C,DiMeo T,Kuperwasser C,Georgakoudi I. Assessment of the role of circulating breast cancer cells in tumor formation and metastatic potential using in vivo flow cytometry. J Biomed Opt 2011; 16: 040501.
  • 65
    Greiner C,Hunter M,Huang P,Rius F,Georgakoudi I. Confocal backscattering spectroscopy for leukemic and normal blood cell discrimination. Cytometry Part A 2011; 79A: 866873.
  • 66
    Greiner C,Hunter M,Rius F,Huang P,Georgakoudi I. Confocal backscattering-based detection of leukemic cells in flowing blood samples. Cytometry Part A 2011; 79A: 874883.
  • 67
    Padera TP,Stoll BR,So PT,Jain RK. Conventional and high-speed intravital multiphoton laser scanning microscopy of microvasculature, lymphatics, and leukocyte-endothelial interactions. Mol Imaging 2002; 1: 915.
  • 68
    He W,Wang H,Hartmann LC,Cheng JX,Low PS. In vivo quantification of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc Natl Acad Sci USA 2007; 104: 1176011765.
  • 69
    Zhong C,Ye J,Myc A,Cao Z,Kukowska J,Baker J,Norris T. In vivo flow cytometry. Opt Soc Am Frontiers Opt 2004: FTuE5.
  • 70
    Zhong CF,Ye, JYMyc A,Thomas TP,Bielinska AU,Baker JRJr.,Norris TB. Two-photon flow cytometry. Proc SPIE 2005; 5700: 7889.
  • 71
    Tkaczyk E,Zhong C,Ye J,Katnik S,Myc A,Thomas T,Luker K,Luker GJr.,Norris T. Two-photon, two-color in vivo flow cytometry to noninvasively monitor multiple circulating cell lines. SPIE 2007; 6631: 66310T.
  • 72
    Tkaczyk ER,Zhong CF,Ye JY,Myc A,Thomas T,Cao Z,Duran-Struuck R,Luker KE,Luker GD,Norris TB,Baker JR. In vivo monitoring of multiple circulating cell populations using two-photon flow cytometry. Opt Commun 2008; 281: 888894.
  • 73
    Zhong CF,Tkaczyk ER,Thomas T,Ye JY,Myc A,Bielinska AU,Cao Z,Majoros I,Keszler B,Baker JR,Norris TB. Quantitative two-photon flow cytometry-in vitro and in vivo. J Biomed Opt 2008; 13: 034008-1034008-19.
  • 74
    Tkaczyk ER,Tkaczyk AH,Katnik S,Ye JY,Luker KE,Luker GD,Myc A,Baker JRJr.,Norris TB. Extended cavity laser enhanced two-photon flow cytometry. J Biomed Opt 2008; 13: 041319-1041319-12.
  • 75
    Chang YC,Ye JY,Thomas TP,Cao Z,Kotlyar A,Tkaczyk ER,Baker JRJr.,Norris TB. Fiber-optic multiphoton flow cytometry in whole blood and in vivo. J Biomed Opt 2010; 15: 047004.
  • 76
    Tkaczyk ER,Tkaczyk AH. Multiphoton flow cytometry strategies and applications. Cytometry Part A 2011; 79A: 775788.
  • 77
    Hauser AE,Junt T,Mempel TR,Sneddon MW,Kleinstein SH,Henrickson SE,von Andrian UH,Shlomchik MJ,Haberman AM. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity 2007; 26: 655667.
  • 78
    Niesner RA,Hauser AE. Recent advances in dynamic intravital multi-photon microscopy. Cytometry Part A 2011; 79A: 789798.
  • 79
    Le TT,Huff TB,Cheng JX. Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. BMC Cancer 2009; 9: 42.
  • 80
    Tanev S,Sun W,Pond J,Tuchin VV,Zharov VP. Flow cytometry with gold nanoparticles and their clusters as scattering contrast agents. J Biophotonics 2009; 2: 505520.
  • 81
    Tanev S,Sun W,Pond J,Tuchin VV,Zharov VP. Optical imaging of cells with gold nanoparticle clusters as light scattering contrast agents: A finite-difference time-domain approach to the modeling of flow cytometry configurations. In: Tuchin VV, editor. Advanced optical cytometry: Methods and disease diagnoses. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. pp 3562.
  • 82
    Bednov AA,Brill GE,Tuchin VV,Ul′yanov SS,Zakharova (Galanzha) EI. Blood and lymph flow measurements in microressels using focused laser beam diffraction phenomenon. Proc SPIE 1994; 2370: 379383.
  • 83
    Ul'yanov SS,Tuchin VV,Bednov AA,Brill GE,Zakharova (Galanzha) EI. Speckle-interferometrical method in application to the blood and lymph flow monitoring in microvessels. Lasers Med Sci 1996; 11: 97107.
  • 84
    Bednov AA,Ul'yanov SS,Tuchin VV,Brill GE,Zakharova (Galanzha) EI. In vivo laser measurements of blood and lymph flow with a small number of scatterers. SPIE CIS Selected Papers 1996; 2732: 2733.
  • 85
    Bednov AA,Zakharova (Galanzha) EI,Brill GE,Tuchin VV, Investigation of statistical properties of lymph flow dynamics using speckle microscopy. Proc SPIE 1997; 2981: 181190.
  • 86
    Brill GE,Tuchin VV,Zakharova (Galanzha) EI,Ulyanov SS. Influence of low power laser irradiation on lymph microcirculation at the increasing of NO production. Proc SPIE 1999; 3726: 157162.
  • 87
    Galanzha EI,Brill GE,Tuchin VV,Ulyanov SS,Solov'eva AV,Sedykh AV. Analysis of lymph flow in microvessels by biomicroscopic and coherent optical methods. Proc SPIE 2000; 4001: 166173.
  • 88
    Starukhin P,Ulyanov S,Galanzha E,Tuchin V. Blood-flow measurements with a small number of scattering events. Appl Opt 2000; 39: 28232829.
  • 89
    Galanzha EI,Brill GE,Ulyanov SS,Tuchin VV,Solov'eva AV,Sedykh AV. Peculiarities of lymph flow in microvessels. Proc SPIE 2000; 3923: 149154.
  • 90
    Galanzha EI,Ulyanov SS,Tuchin VV,Brill GE,Solov'eva AV,Sedykh AV. Comparison of lymph and blood flow in microvessels: Coherent optical measurements. Proc SPIE 2000; 4163: 9498.
  • 91
    Galanzha EI,Ulyanov SS,Tuchin VV,Brill GE, andSolov'eva AV. Imaging of lymph flow in single microvessels in vivo. Proc SPIE 2000; 4224: 317321.
  • 92
    Galanzha EI,Tuchin VV,Ulyanov SS,Solovieva AV,Luo Q,Cheng H. Optical properties of lymph flow in single microvessels: Biomicroscopic, speckle-interferometric, and spectroscopic measurements. Proc SPIE 2001; 4434: 197203.
  • 93
    Galanzha EI,Solov'eva AV,Brill GE,Ulyanov SS,Tuchin VV. Monitoring of lymph flow in microvessels by biomicroscopy and speckle-interferometry. Proc SPIE 2001; 4251: 210214.
  • 94
    Brill GE,Galanzha EI,Ul'ianov SS,Tuchin VV,Stepanova TV,Solov'eva AV. Functional organization of lymphatic microvessels of the rat mesentery. Ross Fiziol Zh Im I M Sechenova 2001; 87: 600607.
  • 95
    Galanzha EI,Fedosov IV,Solov'eva AV,Stepanova TV,Tuchin VV,Brill GE. In vivo lymph dynamic monitoring using speckle-correlation technique and light microscopy. Proc SPIE 2002; 4624: 130133.
  • 96
    Galanzha EI,Brill GE,Aisu Y,Ulyanov SS,Tuchin VV. Speckle and Doppler methods of blood and lymph flow monitoring. In: Tuchin VV, editor. Handbook of Optical Biomedical Diagnostics. Bellingham, WA: SPIE Press; 2002. pp 881937.
  • 97
    Fedosov IV,Tuchin VV,Galanzha EI,Solov'eva AV,Stepanova TV. Recording of lymph flow dynamics in microvessels using correlation properties of scattered coherent radiation. Quantum Electron 2002; 32: 849867.
  • 98
    Galanzha EI,Tuchin VV,Solovieva AV,Stepanova TV,Luo Q,Cheng H. Skin backreflectance and microvascular system functioning at the action of osmotic agents. J Phys D: Appl Phys 2003; 36: 17391746.
  • 99
    Fedosov IV,Ulyanov SS,Galanzha EI,Galanzha VA,Tuchin VV. Laser Doppler and speckle techniques for bioflow measurements. In: Tuchin VV, editor. Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, Vol. 1. Boston: Kluwer Academic Publishers; 2004. pp 397435.
  • 100
    Galanzha EI,Tuchin VV,Solov'eva AV,Stepanova TV,Brill GE,Zharov VP. Development imaging and experimental model for studying pathogenesis and treatment efficacy of postmastectomy lymphedema. Proc SPIE 2002; 4624: 123129.
  • 101
    Galanzha EI,Tuchin VV,Solov'eva AV,Zharov VP. Development of optical diagnostics of microlymphatics at the experimental lymphedema: Comparative analysis. J X-Ray Sci Technol 2002; 10: 215223.
  • 102
    Galanzha EI,Tuchin VV,Zharov VP,Solovieva AV,Stepanova TV,Brill GE. The diagnosis of lymph microcirculation on rat mesentery in vivo. Proc SPIE 2003; 4965: 325333.
  • 103
    Galanzha EI,Tuchin VV,Chowdhury P,Zharov VP. Monitoring of small lymphatics function under different impact on animal model by integrated optical imaging. Proc SPIE 2004; 5474: 204214.
  • 104
    Galanzha EI,Chowdhury P,Tuchin VV,Zharov VP. Monitoring of nicotine impact on microlymphatics of rat mesentery with time-resolved microscopy. Lymphology 2005; 38: 181192.
  • 105
    Galanzha EI,Tuchin VV,Zharov VP. In vivo integrated flow image cytometry and lymph/blood vessels dynamic microscopy. J Biomed Opt 2005; 10: 54018.
  • 106
    Zharov VP,Galanzha EI,Menyaev YA,Tuchin VV. In vivo high-speed imaging of individual cells in fast blood flow. J Biomed Opt 2006; 11: 054034.
  • 107
    Zharov VP,Menyaev Yu,Shashkov EV,Galanzha EI,Khlebtsov BN,Scheludko A,Zimnyakov DA,Tuchin VV. Fluctuations of probe beam in thermolens schematics as potential indicator of cell metabolism, apoptosis, necrosis and laser impact. Proc SPIE 2006; 6085: 1021.
  • 108
    Galanzha EI,Tuchin VV,Zharov VP. Optical monitoring of microlympatic disturbances at experimental lymphedema. Lymphat Res Biol 2007; 5: 1127.
  • 109
    Galanzha EI,Tuchin VV,Zharov VP. Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening (invited review). World J Gastroenterol 2007; 13: 192218.
  • 110
    Tuchin VV,Galanzha EI,Zharov VP. In vivo image flow cytometry. In: Tuchin VV, editor. Advanced optical cytometry: Methods and disease diagnoses. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. pp 387433.
  • 111
    Kalchenko V,Harmelin A,Fine I,Zharov V,Galanzha E,Tuchin V. Advances in intravital microscopy for monitoring cell flow dynamics in vivo. Proc SPIE 2007; 6436: 64360D-164360D-15.
  • 112
    Kalchenko V,Brill A,Bayewitch M,Fine I,Zharov V,Galanzha E,Tuchin V,Harmelin A. In vivo dynamic light scattering imaging of blood coagulation. J Biomed Opt 2007; 12: 052002-1052002-4.
  • 113
    Minamitani H,Tsukada K,Sekizuka E,Oshio C. Optical bioimaging: From living tissue to a single molecule: Imaging and functional analysis of blood flow in organic microcirculation (Forum minireview). J Pharmacol Sci 2003; 93: 227233.
  • 114
    Japee SA,Pittman RN,Ellis CG. A new video image analysis system to study red blood cell dynamics and oxygenation in capillary networks. Microcirculation 2005; 12: 489506.
  • 115
    Dixon JB,Zawieja DC,Gashev AA,Coté GL, Measuring microlymphatic flow using fast video microscopy. J Biomed Opt 2005; 10: 064016.
  • 116
    Dixon JB,Greiner ST,Gashev AA,Coté GL,Moore JE,Zawieja DC. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation 2006; 13: 597610.
  • 117
    McNamara PM,O'Doherty J,O'Connell M-L,Fitzgerald BW,Anderson CD,Nilsson GE,Toll R,Leahy MJ. Tissue viability (TiVi) imaging: Temporal effects of local occlusion studies in the volar forearm. J Biophoton 2010; 3: 6674.
  • 118
    Leahy MJ,O' Doherty J. Optical instrumentation for the measurement of blood perfusion, concentration, and oxygenation in living microcirculation. In: Tuchin VV, editor. Advanced Optical Cytometry: Methods and Disease Diagnoses. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. pp 573603.
  • 119
    Zhu Q,Stockford IM,Crowe JA,Morgan SP. An experimental and theoretical evaluation of rotating orthogonal polarization imaging. J Biomed Opt 2009; 14: 034006.
  • 120
    Shashkov EV,Everts M,Galanzha EI,Zharov VP. Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett 2008; 8: 39533958.
  • 121
    Zharov VP,Lapotko DO. Photothermal imaging of nanoparticles and cells (review). IEEE J Sel Topics Quant Electron 2005; 11: 733751.
  • 122
    Zharov VP,Galitovsky V,Lyle CS,Chambers TC. Superhigh-sensitivity photothermal monitoring of individual cell response to antitumor drug. J Biomed Opt 2006; 11: 064034.
  • 123
    Wang LV. Multiscale photoacoustic microscopy and computed tomography. Nat Photonics 2009; 3: 503509.
  • 124
    Zharov VP. Ultrasharp nonlinear photothermal and photoacoustic resonances and holes beyond the spectral limit. Nat Photonics 2011; 5: 110116.
  • 125
    Lee H,Alt C,Pitsillides CM,Lin CP. Optical detection of intracellular cavitation during selective laser targeting of the retinal pigment epithelium: Dependence of cell death mechanism on pulse duration. J Biomed Opt 2007; 12: 064034.
  • 126
    Khodakovskaya MV,Silva Ke,Nedosekin DA,Dervishi E,Biris AB,Shashkov EV,Galanzha EA,Zharov VP. Multiplex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. PNAS 2011; 108: 10281033.
  • 127
    Standard American National Standard for Safe Use of Lasers, ANSI Z136 1; 2000.
  • 128
    Hu S,Maslov K,Wang LV. Optical-resolution photoacoustic microscopy for in vivo volumetric microvascular imaging in intact tissues. In: Tuchin VV, editor. Handbook of Photonics for Biomedical Science. London: CRC Press, Taylor & Francis Group; 2010. pp 361375.
  • 129
    Petrov YY,Petrova IY,Patrikeev IA,Esenaliev RO,Prough DS. Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: A pilot clinical test in the internal jugular vein. Opt Lett 2006; 31: 18271829.
  • 130
    Ermilov SA,Khamapirad T,Conjusteau A,Leonard MH,Lacewell R,Mehta K,Miller T,Oraevsky AA. Laser optoacoustic imaging system for detection of breast cancer. J Biomed Opt 2009; 14: 024007.
  • 131
    Petrova IY,Esenaliev RO,Petrov YY,Brecht HPE,Svensen CH,Olsson J,Deyo DJ,Prough DS. Optoacoustic monitoring of blood hemoglobin concentration: A pilot clinical study. Opt Lett 2005; 30: 16771679.
  • 132
    Zharov V,Galitovsky V,Viegas M. Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl Phys Lett 2003; 83: 48974899.
  • 133
    Zharov VP,Kim J-W,Everts M,Curiel DT. Self-assembling nanoclusters in living systems: Application for integrated photothermal nanodiagnostics and nanotherapy (review). Nanomedicine 2005; 1: 326345.
  • 134
    Zharov VP,Galitovskaya EN,Jonson C,Kelly T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy. Laser Surg Med 2005; 37: 219226.
  • 135
    Khlebtsov B,Zharov V,Melnikov A,Tuchin V,Khlebtsov N. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 2006; 17: 51675179.
  • 136
    Akchurin G,Khlebtsov B,Akchurin GJr.,Tuchin V,Zharov V,Khlebtsov N. Gold nanoshell photomodification under single nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena. Nanotechnology 2008; 19: 015701-1015701-8.
  • 137
    Wlodkowic D,Khoshmanesh K,Akagi J,Williams DE,Cooper JM. Wormometry-on-a-chip: Innovative technologies for in situ analysis of small multicellular organisms. Cytometry Part A 2011; 79A: 799813.