• 1
    Giuliano KA,DeBiasio RL,Dunlay RT,Gough A,Volosky JM,Zock J,Pavlakis G,Taylor DL. High-content screening: A new approach to easing key bottlenecks in the drug discovery process. J Biomol Screen 1997; 2: 249259.
  • 2
    Haney SA,LaPan P,Pan J,Zhang J. High-content screening moves to the front of the line. Drug Discov Today 2006; 11: 889894.
  • 3
    Kuckuck FW,Edwards BS,Sklar LA. High throughput flow cytometry. Cytometry 2001; 44: 8390.
  • 4
    Arterburn JB,Oprea TI,Prossnitz ER,Edwards BS,Sklar LA. Discovery of selective probes and antagonists for G-protein-coupled receptors FPR/FPRL1 and GPR30. Curr Top Med Chem 2009; 9: 12271236.
  • 5
    Sklar LA,Edwards BS. HTS flow cytometry, small molecule discovery, and the NIH Molecular Libraries Initative. In: Litvin V,Marder P, editors. Flow Cytometry in Drug Discovery and Development, Hoboken, NJ: John Wiley & Sons; 2010. pp 7198.
  • 6
    Jackson WC,Bennett TA,Edwards BS,Prossnitz E,Lopez GP,Sklar LA. Performance of in-line microfluidic mixers in laminar flow for high-throughput flow cytometry. Biotechniques 2002; 33: 220226.
  • 7
    Jackson WC,Kuckuck F,Edwards BS,Mammoli A,Gallegos CM,Lopez GP,Buranda T,Sklar LA. Mixing small volumes for continuous high-throughput flow cytometry: Performance of a mixing Y and peristaltic sample delivery. Cytometry 2002; 47: 183191.
  • 8
    Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB, Kiselyov AS, Parker MA, Tkachenko SE, Savchuck NP, Sklar LA, Oprea TI, and Prossnitz ER. Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat Chem Biol 2006;2:207212.
  • 9
    Bartsch JW,Tran HD,Waller A,Mammoli AA,Buranda T,Sklar LA,Edwards BS. An investigation of liquid carryover and sample residual for a high-throughput flow cytometer sample delivery system. Anal Chem 2004; 76: 38103817.
  • 10
    Young SM,Curry MS,Ransom JT,Ballesteros JA,Prossnitz ER,Sklar LA,Edwards BS. High-throughput microfluidic mixing and multiparametric cell sorting for bioactive compound screening. J Biomol Screen 2004; 9: 103111.
  • 11
    Haynes MK, Strouse JJ, Waller A, Leitao A, Curpan RF, Bologa C, Oprea TI, Prossnitz ER, Edwards BS, Sklar LA, Thompson TA. Detection of intracellular granularity induction in prostate cancer cell lines by small molecules using the HyperCyt high throughput flow cytometry system. J Biomol Screen 2009;14:596609.
  • 12
    Young SM,Bologa C,Prossnitz ER,Oprea TI,Sklar LA,Edwards BS. High-throughput screening with HyperCyt flow cytometry to detect small molecule formylpeptide receptor ligands. J Biomol Screen 2005; 10: 374382.
  • 13
    Edwards BS,Young SM,Oprea TI,Bologa CG,Prossnitz ER,Sklar LA. Biomolecular screening of formylpeptide receptor ligands with a sensitive, quantitative, high-throughput flow cytometry platform. Nat Protoc 2006; 1: 5966.
  • 14
    Saunders MJ,Kim H,Woods TA,Nolan JP,Sklar LA,Edwards BS,Graves SW. Microsphere-based protease assays and screening application for lethal factor and factor Xa. Cytometry Part A 2006; 69A: 342352.
  • 15
    Edwards BS,Ivnitski-Steele I,Young SM,Salas VM,Sklar LA. High-throughput cytotoxicity screening by propidium iodide staining. Curr Protoc Cytom 2007; Chapter 9:Unit 9.24.
  • 16
    Simons PC,Young SM,Gibaja V,Lee WC,Josiah S,Edwards BS,Sklar LA. Duplexed, bead-based competitive assay for inhibitors of protein kinases. Cytometry Part A 2007; 71A: 451459.
  • 17
    Dennis MK,Bowles HJ,MacKenzie DA,Burchiel SW,Edwards BS,Sklar LA,Prossnitz ER,Thompson TA. A multifunctional androgen receptor screening assay using the high-throughput Hypercyt flow cytometry system. Cytometry Part A 2008; 73A: 390399.
  • 18
    Ivnitski-Steele I,Larson RS,Lovato DM,Khawaja HM,Winter SS,Oprea TI,Sklar LA,Edwards BS. High-throughput flow cytometry to detect selective inhibitors of ABCB1, ABCC1, and ABCG2 transporters. Assay Drug Dev Technol 2008; 6: 263276.
  • 19
    Winter SS,Lovato DM,Khawaja HM,Edwards BS,Steele ID,Young SM,Oprea TI,Sklar LA,Larson RS. High-throughput screening for daunorubicin-mediated drug resistance identifies mometasone furoate as a novel ABCB1-reversal agent. J Biomol Screen 2008; 13: 185193.
  • 20
    Surviladze Z, Waller A, Wu Y, Romero E, Edwards BS, Wandinger-Ness A, Sklar LA. Identification of a small GTPase inhibitor using a high-throughput flow cytometry bead-based multiplex assay. J Biomol Screen 2010;15:1020.
  • 21
    Prossnitz ER. Desensitization of N-formylpeptide receptor-mediated activation is dependent upon receptor phosphorylation. J Biol Chem 1997; 272: 1521315219.
  • 22
    Strouse JJ,Young SM,Mitchell HD,Ye RD,Prossnitz ER,Sklar LA,Edwards BS. A novel fluorescent cross-reactive formylpeptide receptor/formylpeptide receptor-like 1 hexapeptide ligand. Cytometry Part A 2009; 75A: 264270.
  • 23
    Edwards BS,Young SM,Oprea TI,Bologa C,Prossnitz E,Sklar LA. Biomolecular screening of formylpeptide receptor ligands with a sensitive, quantitative, high-throughput flow cytometry platform. Nat Protoc 2006; 1: 5966.
  • 24
    Young SM,Bologa CM,Fara D,Bryant BK,Strouse JJ,Arterburn JB,Ye RD,Oprea TI,Prossnitz ER,Sklar LA, et al. Duplex high-throughput flow cytometry screen identifies two novel formylpeptide receptor family probes. Cytometry Part A 2009; 75A: 253263.
  • 25
    Saunders MJ,Edwards BS,Zhu J,Sklar LA,Graves SW. Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. Curr Protoc Cytometry 2010; Chapter 13:Unit 13.12.1–13.12.17.
  • 26
    Saunders MJ,Graves SW,Sklar LA,Oprea TI,Edwards BS. High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. Assay Drug Dev Technol 2010; 8: 3746.
  • 27
    Zhang JH,Chung TD,Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 1999; 4: 6773.
  • 28
    Edwards BS,Bologa C,Young SM,Balakin KV,Prossnitz E,Savchuck NP,Sklar LA,Oprea TI. Integration of virtual screening with high throughput flow cytometry to identify novel small molecule formylpeptide receptor antagonists. Mol Pharmacol 2005; 68: 13011310.
  • 29
    Edwards BS,Young SM,Ivnitsky-Steele I,Ye RD,Prossnitz ER,Sklar LA. High-content screening: Flow cytometry analysis. Methods Mol Biol 2009; 486: 151165.
  • 30
    Ramirez S,Aiken CT,Andrzejewski B,Sklar LA,Edwards BS. High-throughput flow cytometry: Validation in microvolume bioassays. Cytometry A 2003; 53A: 5565.
  • 31
    Rockman HA,Chien KR,Choi DJ,Iaccarino G,Hunter JJ,Ross J,Jr.,Lefkowitz RJ,Koch WJ. Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci USA 1998; 95: 70007005.
  • 32
    Nolan JP,Sklar LA. Suspension array technology: Evolution of the flat-array paradigm. Trends Biotechnol 2002; 20: 912.
  • 33
    Krutzik PO,Nolan GP. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 2006; 3: 361368.
  • 34
    Chen J,Young SM,Allen CP,Seeber A,Péli-Gulli M-P,Panchaud N,Waller A,Ursu O,Yao T,Golden JE, et al. Identification of a small molecular inhibitor of yeast TORC1 using a flow cytometry based multiplex screen. ACS Chem Biol 2012; Feb 1 [Epub ahead of print].
  • 35
    Curpan RF,Simons PC,Zhai D,Young SM,Carter MB,Bologa CG,Oprea TI,Satterthwait AC,Reed JC,Edwards BS, et al. High-throughput screen for the chemical inhibitors of antiapoptotic Bcl-2 family proteins by multiplex flow cytometry. Assay Drug Dev Technol 2011;9:465474.
  • 36
    Simons PC,Young SM,Carter MB,Waller A,Zhai D,Reed JC,Edwards BS,Sklar LA. Simultaneous in vitro molecular screening of protein-peptide interactions by flow cytometry, using six Bcl-2 family proteins as examples. Nat Protoc 2011; 6: 943952.