SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Reya T,Morrison SJ,Clarke MF,Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105111.
  • 2
    Clarke MF,Dick JE,Dirks PB,Eaves CJ,Jamieson CH,Jones DL,Visvader J,Weissman IL,Wahl GM. Cancer stem cells—Perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006; 66: 93399344.
  • 3
    Al-Hajj M,Becker MW,Wicha M,Weissman I,Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 2004; 14: 4347.
  • 4
    Wicha MS. Cancer stem cells and metastasis: Lethal seeds. Clin Cancer Res 2006; 12: 56065607.
  • 5
    Li F,Tiede B,Massague J,Kang Y. Beyond tumorigenesis: Cancer stem cells in metastasis. Cell Res 2007; 17: 314.
  • 6
    Dalerba P,Clarke MF. Cancer stem cells and tumor metastasis: First steps into uncharted territory. Cell Stem Cell 2007; 1: 241242.
  • 7
    Lapidot T,Sirard C,Vormoor J,Murdoch B,Hoang T,Caceres-Cortes J,Minden M,Paterson B,Caligiuri MA,Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645648.
  • 8
    Bonnet D,Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730737.
  • 9
    Sirard C,Lapidot T,Vormoor J,Cashman JD,Doedens M,Murdoch B,Jamal N,Messner H,Addey L,Minden M, et al. Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood 1996; 87: 15391548.
  • 10
    Wang JC,Lapidot T,Cashman JD,Doedens M,Addy L,Sutherland DR,Nayar R,Laraya P,Minden M,Keating A, et al. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood 1998; 91: 24062414.
  • 11
    Singh SK,Hawkins C,Clarke ID,Squire JA,Bayani J,Hide T,Henkelman RM,Cusimano MD,Dirks PB. Identification of human brain tumor initiating cells. Nature 2004; 432: 396401.
  • 12
    Beier D,Hau P,Proescholdt M,Lohmeier A,Wischhusen J,Oefner PJ,Aigner L,Brawanski A,Bogdahn U,Beier CP. CD133(+) and CD133(–) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 2007; 67: 40104015.
  • 13
    Shu Q,Wong KK,Su JM,Adesina AM,Yu LT,Tsang YT,Antalffy BC,Baxter P,Perlaky L,Yang J, et al. Direct orthotopic transplantation of fresh surgical specimen preserves CD133+ tumor cells in clinically relevant mouse models of medulloblastoma and glioma. Stem Cells 2008; 26: 14141424.
  • 14
    Patrawala L,Calhoun T,Schneider-Broussard R,Zhou J,Claypool K,Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 2005; 65: 62076219.
  • 15
    He J,Liu Y,Zhu T,Zhu J,Dimeco F,Vescovi AL,Heth JA,Muraszko KM,Fan X,Lubman DM. CD90 is identified as a marker for cancer stem cells in primary high-grade gliomas using tissue microarrays. Mol Cell Proteomics 2012;11:M111.010744.
  • 16
    Al-Hajj M,Wicha MS,Benito-Hernandez A,Morrison SJ,Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 39833988.
  • 17
    Ponti D,Costa A,Zaffaroni N,Pratesi G,Petrangolini G,Coradini D,Pilotti S,Pierotti MA,Daidone MG. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005; 65: 55065511.
  • 18
    Sheridan C,Kishimoto H,Fuchs RK,Mehrotra S,Bhat-Nakshatri P,Turner CH,Goulet RJr,Badve S,Nakshatri H. CD44+/CD24– breast cancer cells exhibit enhanced invasive properties: An early step necessary for metastasis. Breast Cancer Res 2006; 8: R59.
  • 19
    Donnenberg VS,Landreneau RJ,Donnenberg AD. Tumorigenic stem and progenitor cells: Implications for the therapeutic index of anti-cancer agents. J Controlled Release 2007; 122: 385391.
  • 20
    Ginestier C,Hur MH,Charafe-Jauffret E,Monville F,Dutcher J,Brown M,Jacquemier J,Viens P,Kleer CG,Liu S, et al. ALDH1 Is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1: 555567.
  • 21
    Wright MH,Calcagno AM,Salcido CD,Carlson MD,Ambudkar SV,Varticovski L. Brca1 breast tumors contain distinct CD44+/CD24– and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 2008; 10: R10.
  • 22
    Ricci-Vitiani L,Lombardi DG,Pilozzi E,Biffoni M,Todaro M,Peschle C,De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445: 111115.
  • 23
    O'Brien CA,Pollett A,Gallinger S,Dick JE. A human colon cancer cell capable of initiating tumor growth in immunodeficient mice. Nature 2007; 445: 106110.
  • 24
    Todaro M,Alea MP,Di Stefano AB,Cammareri P,Vermeulen L,Iovino F,Tripodo C,Russo A,Gulotta G,Medema JP, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 2007; 1: 389402.
  • 25
    Dalerba P,Dylla SJ,Park IK,Liu R,Wang X,Cho RW,Hoey T,Gurney A,Huang EH,Simeone DM, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104: 1015810163.
  • 26
    Huang EH,Hynes MJ,Zhang T,Ginestier C,Dontu G,Appelman H,Fields JZ,Wicha MS,Boman BM. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009; 69: 33823389.
  • 27
    Rutella S,Bonanno G,Procoli A,Mariotti A,Corallo M,Prisco MG,Eramo A,Napoletano C,Gallo D,Perillo A, et al. Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clin Cancer Res 2009; 15: 42994311.
  • 28
    Prince ME,Sivanandan R,Kaczorowski A,Wolf GT,Kaplan MJ,Dalerba P,Weissman IL,Clarke MF,Ailles LE. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007; 104: 973978.
  • 29
    Chen YC,Chen YW,Hsu HS,Tseng LM,Huang PI,Lu KH,Chen DT,Tai LK,Yung MC,Chang SC, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 2009; 385: 307313.
  • 30
    Takaishi S,Okumura T,Tu S,Wang SS,Shibata W,Vigneshwaran R,Gordon SA,Shimada Y,Wang TC. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 2009; 27: 10061020.
  • 31
    Zhang C,Li C,He F,Cai Y,Yang H. Identification of CD44+CD24+ gastric cancer stem cells. J Cancer Res Clin Oncol 2011; 137: 16791686.
  • 32
    Ma S,Chan KW,Hu L,Lee TK,Wo JY,Ng IO,Zheng BJ,Guan XY. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132: 25422556.
  • 33
    Yang ZF,Ngai P,Ho DW,Yu WC,Ng MN,Lau CK,Li ML,Tam KH,Lam CT,Poon RT, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology 2008; 47: 919928.
  • 34
    Yin S,Li J,Hu C,Chen X,Yao M,Yan M,Jiang G,Ge C,Xie H,Wan D, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 2007; 120: 14441450.
  • 35
    Ma S,Chan KW,Lee TK,Tang KH,Wo JY,Zheng BJ,Guan XY. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 2008; 6: 11461153.
  • 36
    Cheung PF,Cheng CK,Wong NC,Ho JC,Yip CW,Lui VC,Cheung AN,Fan ST,Cheung ST. Granulin-epithelin precursor is an oncofetal protein defining hepatic cancer stem cells. PLoS One 2011; 6: e28246.
  • 37
    Kim CF,Jackson EL,Woolfenden AE,Lawrence S,Babar I,Vogel S,Crowley D,Bronson RT,Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121: 823835.
  • 38
    Bertolini G,Roz L,Perego P,Tortoreto M,Fontanella E,Gatti L,Pratesi G,Fabbri A,Andriani F,Tinelli S, et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 2009; 106: 1628116286.
  • 39
    Eramo A,Lotti F,Sette G,Pilozzi E,Biffoni M,Di Virgilio A,Conticello C,Ruco L,Peschle C,De Maria R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008; 15: 504514.
  • 40
    Fang D,Nguyen TK,Leishear K,Finko R,Kulp AN,Hotz S,Van Belle PA,Xu X,Elder DE,Herlyn M. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005; 65: 93289337.
  • 41
    Boonyaratanakornkit JB,Yue L,Strachan LR,Scalapino KJ,LeBoit PE,Lu Y,Leong SP,Smith JE,Ghadially R. Selection of tumorigenic melanoma cells using ALDH. J Invest Dermatol 2010; 130: 27992808.
  • 42
    Schatton T,Murphy GF,Frank NY,Yamaura K,Waaga-Gasser AM,Gasser M,Zhan Q,Jordan S,Duncan LM,Weishaupt C, et al. Identification of cells initiating human melanomas. Nature 2008; 451: 345349.
  • 43
    Ferrandina G,Bonanno G,Pierelli L,Perillo A,Procoli A,Mariotti A,Corallo M,Martinelli E,Rutella S,Paglia A, et al. Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer 2008; 18: 506514.
  • 44
    Zhang S,Balch C,Chan MW,Lai HC,Matei D,Schilder JM,Yan PS,Huang TH,Nephew KP. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 2008; 68: 43114320.
  • 45
    Baba T,Convery PA,Matsumura N,Whitaker RS,Kondoh E,Perry T,Huang Z,Bentley RC,Mori S,Fujii S, et al. Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 2009; 28: 209218.
  • 46
    Szotek PP,Pieretti-Vanmarcke R,Masiakos PT,Dinulescu DM,Connolly D,Foster R,Dombkowski D,Preffer F,Maclaughlin DT,Donahoe PK. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA 2006; 103: 1115411159.
  • 47
    Wang L,Mezencev R,Bowen NJ,Matyunina LV,McDonald JF. Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Mol Cell Biochem 2012; 363: 257268.
  • 48
    Hermann PC,Huber SL,Herrler T,Aicher A,Ellwart JW,Guba M,Bruns CJ,Heeschen C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1: 313323.
  • 49
    Li C,Heidt DG,Dalerba P,Burant CF,Zhang L,Adsay V,Wicha M,Clarke MF,Simeone DM. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67: 10301037.
  • 50
    Li C,Wu JJ,Hynes M,Dosch J,Sarkar B,Welling TH,Pasca di Magliano M,Simeone DM. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 2011; 141: 22182227e5.
  • 51
    Rasheed ZA,Yang J,Wang Q,Kowalski J,Freed I,Murter C,Hong SM,Koorstra JB,Rajeshkumar NV,He X, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 2010; 102: 340351.
  • 52
    Collins AT,Berry PA,Hyde C,Stower MJ,Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65: 1094610951.
  • 53
    Bussolati B,Bruno S,Grange C,Ferrando U,Camussi G. Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J 2008; 22: 36963705.
  • 54
    Azzi S,Bruno S,Giron-Michel J,Clay D,Devocelle A,Croce M,Ferrini S,Chouaib S,Vazquez A,Charpentier B, et al. Differentiation therapy: Targeting human renal cancer stem cells with interleukin 15. J Natl Cancer Inst 2011; 103: 18841898.
  • 55
    Mitsutake N,Iwao A,Nagai K,Namba H,Ohtsuru A,Saenko V,Yamashita S. Characterization of side population in thyroid cancer cell lines: Cancer stem-like cells are enriched partly but not exclusively. Endocrinology 2007; 148: 17971803.
  • 56
    Choijamts B,Jimi S,Kondo T,Naganuma Y,Matsumoto T,Kuroki M,Iwasaki H,Emoto M. CD133+ cancer stem cell-like cells derived from uterine carcinosarcoma (malignant mixed Mullerian tumor). Stem Cells 2011; 29: 14851495.
  • 57
    Pham PV,Phan NL,Nguyen NT,Truong NH,Duong TT,Le DV,Truong KD,Phan NK. Differentiation of breast cancer stem cells by knockdown of CD44: Promising differentiation therapy. J Transl Med 2011; 9: 209.
  • 58
    Du L,Wang H,He L,Zhang J,Ni B,Wang X,Jin H,Cahuzac N,Mehrpour M,Lu Y. et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 2008; 14: 67516760.
  • 59
    Chen R,Nishimura MC,Bumbaca SM,Kharbanda S,Forrest WF,Kasman IM,Greve JM,Soriano RH,Gilmour LL,Rivers CS, et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 2010; 17: 362375.
  • 60
    Gunther HS,Schmidt NO,Phillips HS,Kemming D,Kharbanda S,Soriano R,Modrusan Z,Meissner H,Westphal M,Lamszus K. Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 2008; 27: 28972909.
  • 61
    Shmelkov SV,Butler JM,Hooper AT,Hormigo A,Kushner J,Milde T,St Clair R,Baljevic M,White I,Jin DK, et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors. J Clin Invest 2008; 118: 21112120.
  • 62
    Lathia JD,Heddleston JM,Venere M,Rich JN. Deadly teamwork: Neural cancer stem cells and the tumor microenvironment. Cell Stem Cell 2011; 8: 482485.
  • 63
    O'Brien CA,Kreso A,Dick JE. Cancer stem cells in solid tumors: An overview. Semin Radiat Oncol 2009; 19: 7177.
  • 64
    Beier D,Schulz JB,Beier CP. Chemoresistance of glioblastoma cancer stem cells—Much more complex than expected. Mol Cancer 2011; 10: 128.
  • 65
    Kawamoto M,Ishiwata T,Cho K,Uchida E,Korc M,Naito Z,Tajiri T. Nestin expression correlates with nerve and retroperitoneal tissue invasion in pancreatic cancer. Hum Pathol 2009; 40: 189198.
  • 66
    Maeda S,Shinchi H,Kurahara H,Mataki Y,Maemura K,Sato M,Natsugoe S,Aikou T,Takao S. CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br J Cancer 2008; 98: 13891397.
  • 67
    Sakakibara M,Fujimori T,Miyoshi T,Nagashima T,Fujimoto H,Suzuki HT,Ohki Y,Fushimi K,Yokomizo J,Nakatani Y, et al. Aldehyde dehydrogenase 1-positive cells in axillary lymph node metastases after chemotherapy as a prognostic factor in patients with lymph node-positive breast cancer. Cancer 2012; 118: 38993910.
  • 68
    Toll AD,Boman BM,Palazzo JP. Dysplastic lesions in inflammatory bowel disease show increased positivity for the stem cell marker aldehyde dehydrogenase. Hum Pathol 2012; 43: 238242.
  • 69
    Vogler T,Kriegl L,Horst D,Engel J,Sagebiel S,Schaffauer AJ,Kirchner T,Jung A. The expression pattern of aldehyde dehydrogenase 1 (ALDH1) is an independent prognostic marker for low survival in colorectal tumors. Exp Mol Pathol 2011; 92: 111117.
  • 70
    Wang T,Ong CW,Shi J,Srivastava S,Yan B,Cheng CL,Yong WP,Chan SL,Yeoh KG,Iacopetta B, et al. Sequential expression of putative stem cell markers in gastric carcinogenesis. Br J Cancer 2011; 105: 658665.
  • 71
    Zhou BB,Zhang H,Damelin M,Geles KG,Grindley JC,Dirks PB. Tumor-initiating cells: Challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 2009; 8: 806823.
  • 72
    Schmidt P,Abken H. The beating heart of melanomas: A minor subset of cancer cells sustains tumor growth. Oncotarget 2011; 2: 313320.
  • 73
    Reya T,Clevers H. Wnt signalling in stem cells and cancer. Nature 2005; 434: 843850.
  • 74
    Ng JM,Curran T. The Hedgehog's tale: Developing strategies for targeting cancer. Nat Rev Cancer 2011; 11: 493501.
  • 75
    Singh S,Wang Z,Liang Fei D,Black KE,Goetz JA,Tokhunts R,Giambelli C,Rodriguez-Blanco J,Long J,Lee E, et al. Hedgehog-producing cancer cells respond to and require autocrine Hedgehog activity. Cancer Res 2011; 71: 44544463.
  • 76
    Roy M,Pear WS,Aster JC. The multifaceted role of Notch in cancer. Curr Opin Genet Dev 2007; 17: 5259.
  • 77
    Ishiwata T,Matsuda Y,Naito Z. Nestin in gastrointestinal and other cancers: Effects on cells and tumor angiogenesis. World J Gastroenterol 2011; 17: 409418.
  • 78
    Jeter CR,Badeaux M,Choy G,Chandra D,Patrawala L,Liu C,Calhoun-Davis T,Zaehres H,Daley GQ,Tang DG. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 2009; 27: 9931005.
  • 79
    Jeter CR,Liu B,Liu X,Chen X,Liu C,Calhoun-Davis T,Repass J,Zaehres H,Shen JJ,Tang DG. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 2011; 30: 38333845.
  • 80
    Bierie B,Moses HL. Tumor microenvironment: TGFbeta: The molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006; 6: 506520.
  • 81
    Massague J. TGFbeta in Cancer. Cell 2008; 134: 215230.
  • 82
    Clement V,Sanchez P,de Tribolet N,Radovanovic I,Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007; 17: 165172.
  • 83
    Izrailit J,Reedijk M. Developmental pathways in breast cancer and breast tumor-initiating cells: Therapeutic implications. Cancer Lett 2012; 317: 115126.
  • 84
    Liu S,Dontu G,Mantle ID,Patel S,Ahn NS,Jackson KW,Suri P,Wicha MS. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006; 66: 60636071.
  • 85
    Bae KM,Parker NN,Dai Y,Vieweg J,Siemann DW. E-cadherin plasticity in prostate cancer stem cell invasion. Am J Cancer Res 2011; 1: 7184.
  • 86
    Nakatsugawa M,Takahashi A,Hirohashi Y,Torigoe T,Inoda S,Murase M,Asanuma H,Tamura Y,Morita R,Michifuri Y, et al. SOX2 is overexpressed in stem-like cells of human lung adenocarcinoma and augments the tumorigenicity. Lab Invest 2011; 91: 17961804.
  • 87
    Malanchi I,Peinado H,Kassen D,Hussenet T,Metzger D,Chambon P,Huber M,Hohl D,Cano A,Birchmeier W, et al. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 2008; 452: 650653.
  • 88
    Mueller MT,Hermann PC,Witthauer J,Rubio-Viqueira B,Leicht SF,Huber S,Ellwart JW,Mustafa M,Bartenstein P,D'Haese JG, et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 2009; 137: 11021113.
  • 89
    Singh BN,Fu J,Srivastava RK,Shankar S. Hedgehog signaling antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell characteristics: Molecular mechanisms. PLoS One 2011; 6: e27306.
  • 90
    Velpula KK,Dasari VR,Tsung AJ,Dinh DH,Rao JS. Cord blood stem cells revert glioma stem cell EMT by down regulating transcriptional activation of Sox2 and Twist1. Oncotarget 2011; 2: 10281042.
  • 91
    Zhao C,Chen A,Jamieson CH,Fereshteh M,Abrahamsson A,Blum J,Kwon HY,Kim J,Chute JP,Rizzieri D, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 2009; 458: 776779.
  • 92
    Zhou Y,Yang J,Kopecek J. Selective inhibitory effect of HPMA copolymer-cyclopamine conjugate on prostate cancer stem cells. Biomaterials 2012; 33: 18631872.
  • 93
    Quintana E,Shackleton M,Foster HR,Fullen DR,Sabel MS,Johnson TM,Morrison SJ. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 2010; 18: 510523.
  • 94
    Notta F,Mullighan CG,Wang JC,Poeppl A,Doulatov S,Phillips LA,Ma J,Minden MD,Downing JR,Dick JE. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 2011; 469: 362367.
  • 95
    Dalerba P,Kalisky T,Sahoo D,Rajendran PS,Rothenberg ME,Leyrat AA,Sim S,Okamoto J,Johnston DM,Qian D, et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 2011; 29: 11201127.
  • 96
    Navin N,Kendall J,Troge J,Andrews P,Rodgers L,McIndoo J,Cook K,Stepansky A,Levy D,Esposito D, et al. Tumor evolution inferred by single-cell sequencing. Nature 2011; 472: 9094.
  • 97
    Lathia JD,Gallagher J,Myers JT,Li M,Vasanji A,McLendon RE,Hjelmeland AB,Huang AY,Rich JN. Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells. PLoS One 2011; 6: e24807.
  • 98
    Lathia JD,Hitomi M,Gallagher J,Gadani SP,Adkins J,Vasanji A,Liu L,Eyler CE,Heddleston JM,Wu Q, et al. Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis 2011; 2: e200.
  • 99
    Zhu L,Gibson P,Currle DS,Tong Y,Richardson RJ,Bayazitov IT,Poppleton H,Zakharenko S,Ellison DW,Gilbertson RJ. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 2009; 457: 603607.
  • 100
    Hope KJ,Jin L,Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5: 738743.
  • 101
    Goardon N,Marchi E,Atzberger A,Quek L,Schuh A,Soneji S,Woll P,Mead A,Alford KA,Rout R, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 2011; 19: 138152.
  • 102
    Hermann PC,Bhaskar S,Cioffi M,Heeschen C. Cancer stem cells in solid tumors. Semin Cancer Biol 2010; 20: 7784.
  • 103
    Wessels JT,Yamauchi K,Hoffman RM,Wouters FS. Advances in cellular, subcellular, and nanoscale imaging in vitro and in vivo. Cytometry A 2010; 77: 667676.
  • 104
    Morgan SP. Can new optical techniques for in vivo imaging and flow cytometry of the microcirculation benefit sickle cell disease research? Cytometry A 2011; 79: 766774.
  • 105
    Li Y,Guo J,Wang C,Fan Z,Liu G,Gu Z,Damm D,Mosig A,Wei X. Circulation times of prostate cancer and hepatocellular carcinoma cells by in vivo flow cytometry. Cytometry A 2011; 79: 848854.
  • 106
    Takao M,Takeda K. Enumeration, characterization, and collection of intact circulating tumor cells by cross contamination-free flow cytometry. Cytometry A 2011; 79: 107117.
  • 107
    Fiser K,Sieger T,Schumich A,Wood B,Irving J,Mejstrikova E,Dworzak MN. Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data. Cytometry A 2012; 81: 2534.
  • 108
    Scholtens TM,Schreuder F,Ligthart ST,Swennenhuis JF,Greve J,Terstappen LW. Automated identification of circulating tumor cells by image cytometry. Cytometry A 2012; 81: 138148.
  • 109
    Liu X,Hsieh HB,Campana D,Bruce RH. A new method for high speed, sensitive detection of minimal residual disease. Cytometry A 2012; 81: 169175.
  • 110
    Solly F,Angelot F,Garand R,Ferrand C,Seilles E,Schillinger F,Decobecq A,Billot M,Larosa F,Plouvier E, et al. CD304 is preferentially expressed on a subset of B-lineage acute lymphoblastic leukemia and represents a novel marker for minimal residual disease detection by flow cytometry. Cytometry A 2012; 81: 1724.
  • 111
    Fabian A,Barok M,Vereb G,Szollosi J. Die hard: Are cancer stem cells the Bruce Willises of tumor biology? Cytometry A 2009; 75: 6774.
  • 112
    Mannelli G,Gallo O. Cancer stem cells hypothesis and stem cells in head and neck cancers. Cancer Treat Rev 2012; 38: 515539.
  • 113
    Greve B,Kelsch R,Spaniol K,Eich HT,Gotte M. Flow cytometry in cancer stem cell analysis and separation. Cytometry A 2012; 81: 284293.
  • 114
    Kelly PN,Dakic A,Adams JM,Nutt SL,Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317: 337.
  • 115
    Hill RP. Identifying cancer stem cells in solid tumors: Case not proven. Cancer Res 2006; 66: 1891–1895; discussion 1890.
  • 116
    Shackleton M,Quintana E,Fearon ER,Morrison SJ. Heterogeneity in cancer: Cancer stem cells versus clonal evolution. Cell 2009; 138: 822829.
  • 117
    Quintana E,Shackleton M,Sabel MS,Fullen DR,Johnson TM,Morrison SJ. Efficient tumor formation by single human melanoma cells. Nature 2008; 456: 593598.
  • 118
    Cheng L,Ramesh AV,Flesken-Nikitin A,Choi J,Nikitin AY. Mouse models for cancer stem cell research. Toxicol Pathol 2010; 38: 6271.
  • 119
    Yilmaz OH,Valdez R,Theisen BK,Guo W,Ferguson DO,Wu H,Morrison SJ. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475482.
  • 120
    Lathia JD,Gallagher J,Heddleston JM,Wang J,Eyler CE,Macswords J,Wu Q,Vasanji A,McLendon RE,Hjelmeland AB, et al. Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 2010; 6: 421432.
  • 121
    Prestegarden L,Svendsen A,Wang J,Sleire L,Skaftnesmo KO,Bjerkvig R,Yan T,Askland L,Persson A,Sakariassen PO, et al. Glioma cell populations grouped by different cell type markers drive brain tumor growth. Cancer Res 2010; 70: 42744279.
  • 122
    Ogden AT,Waziri AE,Lochhead RA,Fusco D,Lopez K,Ellis JA,Kang J,Assanah M,McKhann GM,Sisti MB, et al. Identification of A2B5+CD133– tumor-initiating cells in adult human gliomas. Neurosurgery 2008; 62: 505514; discussion 514–515.
  • 123
    Wang J,Sakariassen PO,Tsinkalovsky O,Immervoll H,Boe SO,Svendsen A,Prestegarden L,Rosland G,Thorsen F,Stuhr L, et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 2008; 122: 761768.
  • 124
    Nakshatri H,Srour EF,Badve S. Breast cancer stem cells and intrinsic subtypes: Controversies rage on. Curr Stem Cell Res Ther 2009; 4: 5060.
  • 125
    Zeilstra J,Joosten SP,Dokter M,Verwiel E,Spaargaren M,Pals ST. Deletion of the WNT target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis. Cancer Res 2008; 68: 36553661.
  • 126
    Krause DS,Lazarides K,von Andrian UH,Van Etten RA. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12: 11751180.
  • 127
    Balbuena J,Pachon G,Lopez-Torrents G,Aran JM,Castresana JS,Petriz J. ABCG2 is required to control the sonic hedgehog pathway in side population cells with stem-like properties. Cytometry A 2011; 79: 672683.
  • 128
    Li L,Neaves WB. Normal stem cells and cancer stem cells: The niche matters. Cancer Res 2006; 66: 45534557.
  • 129
    Calabrese C,Poppleton H,Kocak M,Hogg TL,Fuller C,Hamner B,Oh EY,Gaber MW,Finklestein D,Allen M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11: 6982.
  • 130
    Beck B,Driessens G,Goossens S,Youssef KK,Kuchnio A,Caauwe A,Sotiropoulou PA,Loges S,Lapouge G,Candi A, et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumors. Nature 2011; 478: 399403.
  • 131
    Chen W,Tang T,Eastham-Anderson J,Dunlap D,Alicke B,Nannini M,Gould S,Yauch R,Modrusan Z,DuPree KJ, et al. Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells. Proc Natl Acad Sci USA 2011; 108: 95899594.
  • 132
    Tian H,Callahan CA,DuPree KJ,Darbonne WC,Ahn CP,Scales SJ,de Sauvage FJ. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci USA 2009; 106: 42544259.
  • 133
    Yauch RL,Gould SE,Scales SJ,Tang T,Tian H,Ahn CP,Marshall D,Fu L,Januario T,Kallop D, et al. A paracrine requirement for hedgehog signalling in cancer. Nature 2008; 455: 406410.
  • 134
    Dosch JS,Pasca di Magliano M,Simeone DM. Pancreatic cancer and hedgehog pathway signaling: New insights. Pancreatology 2010; 10: 151157.
  • 135
    Grisendi G,Bussolari R,Veronesi E,Piccinno S,Burns JS,De Santis G,Loschi P,Pignatti M,Di Benedetto F,Ballarin R, et al. Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: The Mesenkillers. Am J Cancer Res 2011; 1: 787805.
  • 136
    Malanchi I,Santamaria-Martinez A,Susanto E,Peng H,Lehr HA,Delaloye JF,Huelsken J. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2012; 481: 8589.
  • 137
    Lonardo E,Hermann PC,Mueller MT,Huber S,Balic A,Miranda-Lorenzo I,Zagorac S,Alcala S,Rodriguez-Arabaolaza I,Ramirez JC, et al. Nodal/activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell 2011; 9: 433446.
  • 138
    Olive KP,Jacobetz MA,Davidson CJ,Gopinathan A,McIntyre D,Honess D,Madhu B,Goldgraben MA,Caldwell ME,Allard D, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009; 324: 14571461.
  • 139
    Axelson H,Fredlund E,Ovenberger M,Landberg G,Pahlman S. Hypoxia-induced dedifferentiation of tumor cells—A mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol 2005; 16: 554563.
  • 140
    Li Z,Bao S,Wu Q,Wang H,Eyler C,Sathornsumetee S,Shi Q,Cao Y,Lathia J,McLendon RE, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009; 15: 501513.
  • 141
    Seidel S,Garvalov BK,Wirta V,von Stechow L,Schanzer A,Meletis K,Wolter M,Sommerlad D,Henze AT,Nister M, et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 2010; 133: 983995.
  • 142
    Hashimoto O,Shimizu K,Semba S,Chiba S,Ku Y,Yokozaki H,Hori Y. Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1alpha-dependent manner in pancreatic cancer cells. Pathobiology 2011; 78: 181192.
  • 143
    Ma Y,Liang D,Liu J,Axcrona K,Kvalheim G,Stokke T,Nesland JM,Suo Z. Prostate Cancer Cell Lines under Hypoxia Exhibit Greater Stem-Like Properties. PLoS One 2011; 6: e29170.
  • 144
    McCord AM,Jamal M,Shankavaram UT,Lang FF,Camphausen K,Tofilon PJ. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 2009; 7: 489497.
  • 145
    Feldman DE,Chen C,Punj V,Tsukamoto H,Machida K. Pluripotency factor-mediated expression of the leptin receptor (OB-R) links obesity to oncogenesis through tumor-initiating stem cells. Proc Natl Acad Sci USA 2011; 109: 829834.
  • 146
    Guo S,Liu M,Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta 2011; 1815: 197213.
  • 147
    Ricci-Vitiani L,Pallini R,Biffoni M,Todaro M,Invernici G,Cenci T,Maira G,Parati EA,Stassi G,Larocca LM, et al. Tumor vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 2010; 468: 824828.
  • 148
    Wang R,Chadalavada K,Wilshire J,Kowalik U,Hovinga KE,Geber A,Fligelman B,Leversha M,Brennan C,Tabar V. Glioblastoma stem-like cells give rise to tumor endothelium. Nature 2010; 468: 829833.
  • 149
    Wurmser AE,Nakashima K,Summers RG,Toni N,D'Amour KA,Lie DC,Gage FH. Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 2004; 430: 350356.
  • 150
    Joo KM,Jin J,Kang BG,Lee SJ,Kim KH,Yang H,Lee Y-A,Cho YJ,Im Y-S,Lee D-S, et al. Trans-differentiation of neural stem cells: A therapeutic mechanism against the radiation induced brain damage. PLoS One 2012; 7: e25936.
  • 151
    Montiel-Eulefi E,Nery AA,Rodrigues LC,Sanchez R,Romero F,Ulrich H. Neural differentiation of rat aorta pericyte cells. Cytometry A 2012; 81: 6571.
  • 152
    Zimmerlin L,Donnenberg VS,Donnenberg AD. Pericytes: A universal adult tissue stem cell? Cytometry A 2012; 81: 1214.
  • 153
    Ghiaur G,Gerber J,Jones RJ. Concise review: Cancer stem cells and minimal residual disease. Stem Cells 2012; 30: 8993.
  • 154
    Raimondi C,Gianni W,Cortesi E,Gazzaniga P. Cancer stem cells and epithelial-mesenchymal transition: Revisiting minimal residual disease. Curr Cancer Drug Targets 2010; 10: 496508.
  • 155
    Koch U,Krause M,Baumann M. Cancer stem cells at the crossroads of current cancer therapy failures—Radiation oncology perspective. Semin Cancer Biol 2010; 20: 116124.
  • 156
    Dylla SJ,Beviglia L,Park IK,Chartier C,Raval J,Ngan L,Pickell K,Aguilar J,Lazetic S,Smith-Berdan S, et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 2008; 3: e2428.
  • 157
    Strojnik T,Rosland GV,Sakariassen PO,Kavalar R,Lah T. Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: Correlation of nestin with prognosis of patient survival. Surg Neurol 2007; 68: 133143; discussion 143–144.
  • 158
    Zeppernick F,Ahmadi R,Campos B,Dictus C,Helmke BM,Becker N,Lichter P,Unterberg A,Radlwimmer B,Herold-Mende CC. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 2008; 14: 123129.
  • 159
    Cohen SJ,Punt CJ,Iannotti N,Saidman BH,Sabbath KD,Gabrail NY,Picus J,Morse M,Mitchell E,Miller MC, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26: 32133221.
  • 160
    Dawood S,Broglio K,Valero V,Reuben J,Handy B,Islam R,Jackson S,Hortobagyi GN,Fritsche H,Cristofanilli M. Circulating tumor cells in metastatic breast cancer: From prognostic stratification to modification of the staging system? Cancer 2008; 113: 24222430.
  • 161
    Hu Y,Fan L,Zheng J,Cui R,Liu W,He Y,Li X,Huang S. Detection of circulating tumor cells in breast cancer patients utilizing multiparameter flow cytometry and assessment of the prognosis of patients in different CTCs levels. Cytometry A 2010; 77: 213219.
  • 162
    Wang FB,Yang XQ,Yang S,Wang BC,Feng MH,Tu JC. A higher number of circulating tumor cells (CTC) in peripheral blood indicates poor prognosis in prostate cancer patients—A meta-analysis. Asian Pac J Cancer Prev 2011; 12: 26292635.
  • 163
    Fan ST,Yang ZF,Ho DW,Ng MN,Yu WC,Wong J. Prediction of posthepatectomy recurrence of hepatocellular carcinoma by circulating cancer stem cells: A prospective study. Ann Surg 2011; 254: 569576.
  • 164
    Iinuma H,Watanabe T,Mimori K,Adachi M,Hayashi N,Tamura J,Matsuda K,Fukushima R,Okinaga K,Sasako M, et al. Clinical significance of circulating tumor cells, including cancer stem-like cells, in peripheral blood for recurrence and prognosis in patients with Dukes' stage B and C colorectal cancer. J Clin Oncol 2011; 29: 15471555.
  • 165
    Pilati P,Mocellin S,Bertazza L,Galdi F,Briarava M,Mammano E,Tessari E,Zavagno G,Nitti D. Prognostic value of putative circulating cancer stem cells in patients undergoing hepatic resection for colorectal liver metastasis. Ann Surg Oncol 2012; 19: 402408.
  • 166
    Li X,Lewis MT,Huang J,Gutierrez C,Osborne CK,Wu MF,Hilsenbeck SG,Pavlick A,Zhang X,Chamness GC, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100: 672679.
  • 167
    Signore M,Ricci-Vitiani L,De Maria R. Targeting apoptosis pathways in cancer stem cells. Cancer Lett 2011. DOI: 10.1016/j.canlet.2011.01.013.
  • 168
    Chaterjee M,van Golen KL. Breast cancer stem cells survive periods of farnesyl-transferase inhibitor-induced dormancy by undergoing autophagy. Bone Marrow Res 2011; 2011: 362938.
  • 169
    Viale A,De Franco F,Orleth A,Cambiaghi V,Giuliani V,Bossi D,Ronchini C,Ronzoni S,Muradore I,Monestiroli S, et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 2009; 457: 5156.
  • 170
    Hamilton A,Helgason GV,Schemionek M,Zhang B,Myssina S,Allan EK,Nicolini FE,Muller-Tidow C,Bhatia R,Brunton VG, et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 2012; 119: 15011510.
  • 171
    Buijs JT,van der Horst G,van den Hoogen C,Cheung H,de Rooij B,Kroon J,Petersen M,van Overveld PG,Pelger RC,van der Pluijm G. The BMP2/7 heterodimer inhibits the human breast cancer stem cell subpopulation and bone metastases formation. Oncogene 2012; 31: 21642174.
  • 172
    Buommino E,Tirino V,De Filippis A,Silvestri F,Nicoletti R,Ciavatta ML,Pirozzi G,Tufano MA. 3-O-methylfunicone, from Penicillium pinophilum, is a selective inhibitor of breast cancer stem cells. Cell Prolif 2011; 44: 401409.
  • 173
    Gil-Ranedo J,Mendiburu-Elicabe M,Garcia-Villanueva M,Medina D,del Alamo M,Izquierdo M. An off-target nucleostemin RNAi inhibits growth in human glioblastoma-derived cancer stem cells. PLoS One 2011; 6: e28753.
  • 174
    Low J,Blosser W,Dowless M,Ricci-Vitiani L,Pallini R,de Maria R,Stancato L. Knockdown of ubiquitin ligases in glioblastoma cancer stem cells leads to cell death and differentiation. J Biomol Screen 2012; 17: 152162.
  • 175
    Wu Y,Cain-Hom C,Choy L,Hagenbeek TJ,de Leon GP,Chen Y,Finkle D,Venook R,Wu X,Ridgway J, et al. Therapeutic antibody targeting of individual Notch receptors. Nature 2010; 464: 10521057.
  • 176
    Sharma A,Paranjape AN,Rangarajan A,Dighe RR. A monoclonal antibody against human Notch1 ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells. Mol Cancer Ther 2012; 11: 7786.
  • 177
    Zhang Y,Piao B,Hua B,Hou W,Xu W,Qi X,Zhu X,Pei Y,Lin H. Oxymatrine diminishes the side population and inhibits the expression of beta-catenin in MCF-7 breast cancer cells. Med Oncol 2011; 28( Suppl 1): 99107.
  • 178
    Vainstein V,Kirnasovsky OU,Kogan Y,Agur Z. Strategies for cancer stem cell elimination: Insights from mathematical modeling. J Theor Biol 2011; 298: 3241.
  • 179
    Agur Z,Kogan Y,Levi L,Harrison H,Lamb R,Kirnasovsky OU,Clarke RB. Disruption of a quorum sensing mechanism triggers tumorigenesis: A simple discrete model corroborated by experiments in mammary cancer stem cells. Biol Direct 2010; 5: 20.
  • 180
    Bartucci M,Svensson S,Romania P,Dattilo R,Patrizii M,Signore M,Navarra S,Lotti F,Biffoni M,Pilozzi E, et al. Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy. Cell Death Differ 2012; 19: 768778.
  • 181
    Kanai R,Rabkin SD,Yip S,Sgubin D,Zaupa CM,Hirose Y,Louis DN,Wakimoto H,Martuza RL. Oncolytic virus-mediated manipulation of DNA damage responses: Synergy with chemotherapy in killing glioblastoma stem cells. J Natl Cancer Inst 2012; 104: 4255.
  • 182
    Whitworth JM,Londono-Joshi AI,Sellers JC,Oliver PJ,Muccio DD,Atigadda VR,Straughn JM Jr,Buchsbaum DJ. The impact of novel retinoids in combination with platinum chemotherapy on ovarian cancer stem cells. Gynecol Oncol 2012; 125: 226230.
  • 183
    Hawkins RE,Gilham DE,Debets R,Eshhar Z,Taylor N,Abken H,Schumacher TN,Consortium A. Development of adoptive cell therapy for cancer: A clinical perspective. Hum Gene Ther 2010; 21: 665672.
  • 184
    Schmidt P,Kopecky C,Hombach A,Zigrino P,Mauch C,Abken H. Eradication of melanomas by targeted elimination of a minor subset of tumor cells. Proc Natl Acad Sci USA 2011; 108: 24742479.
  • 185
    Schlaak M,Schmidt P,Bangard C,Kurschat P,Mauch C,Abken H. Regression of metastatic melanoma in a patient by antibody targeting of cancer stem cells. Oncotarget 2012; 3: 2230.