SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Siniscalco D,Pandolfi A,Galderisi U. State-of-the-art on basic and applied stem cell therapy; stem cell research italy-international society for cellular therapy Europe, joint meeting, Montesilvano (PE)-Italy, June 10–12, 2011. Stem Cells Dev 2012; 21: 668669.
  • 2
    Smith RK,Korda M,Blunn GW,Goodship AE. Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Vet J 2003; 35: 99102.
  • 3
    Guest DJ,Smith MR,Allen WR. Equine embryonic stem-like cells and mesenchymal stromal cells have different survival rates and migration patterns following their injection into damaged superficial digital flexor tendon. Equine Vet J 2010; 42: 636642.
  • 4
    Guest DJ,Smith MR,Allen WR. Monitoring the fate of autologous and allogeneic mesenchymal progenitor cells injected into the superficial digital flexor tendon of horses: Preliminary study. Equine Vet J 2008; 40: 178181.
  • 5
    Wilke MM,Nydam DV,Nixon AJ. Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res 2007; 25: 913925.
  • 6
    Watts AE,Yeager AE,Kopyov OV,Nixon AJ. Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis model. Stem Cell Res Ther 2011; 2: 4.
  • 7
    Crovace A,Lacitignola L,Rossi G,Francioso E. Histological and immunohistochemical evaluation of autologous cultured bone marrow mesenchymal stem cells and bone marrow mononucleated cells in collagenase-induced tendinitis of equine superficial digital flexor tendon. Vet Med Int 2010; 2010: 250978.
  • 8
    Godwin EE,Young NJ,Dudhia J,Beamish IC,Smith RK. Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Vet J 2012; 44: 2532.
  • 9
    Stewart MC,Stewart AA. Mesenchymal stem cells: Characteristics, sources, and mechanisms of action. Vet Clin North Am Equine Pract 2011; 27: 243261.
  • 10
    De Schauwer C,Meyer E,van de Walle GR,Van SA. Markers of stemness in equine mesenchymal stem cells: A plea for uniformity. Theriogenology 2011; 75: 14311443.
  • 11
    Sah RL,Ratcliffe A. Translational models for musculoskeletal tissue engineering and regenerative medicine. Tissue Eng Part B Rev 2010; 16: 13.
  • 12
    Crovace A,Lacitignola L,Francioso E,Rossi G. Histology and immunohistochemistry study of ovine tendon grafted with cBMSCs and BMMNCs after collagenase-induced tendinitis. Vet Comp Orthop Traumatol 2008; 21: 329336.
  • 13
    Liu W,Chen B,Deng D,Xu F,Cui L,Cao Y. Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model. Tissue Eng 2006; 12: 775788.
  • 14
    Patterson-Kane JC,Becker DL,Rich T. The pathogenesis of tendon microdamage in athletes: The horse as a natural model for basic cellular research. J Comp Pathol 2012; 147: 227247.
  • 15
    McLean M. Spotlight on: Dr. Lynne Oliver, Office of New Animal Drug Evaluation. Available at: http://www.fda.gov/AnimalVeterinary/NewsEvents/FDAVeterinarianNewsletter/ucm210093.htm 2011; (20/12/2011).
  • 16
    Fortier LA,Smith RK. Regenerative medicine for tendinous and ligamentous injuries of sport horses. Vet Clin North Am Equine Pract 2008; 24: 191201.
  • 17
    Richardson LE,Dudhia J,Clegg PD,Smith R. Stem cells in veterinary medicine—Attempts at regenerating equine tendon after injury. Trends Biotechnol 2007; 25: 409416.
  • 18
    Peroni JF,Borjesson DL. Anti-inflammatory and immunomodulatory activities of stem cells. Vet Clin North Am Equine Pract 2011; 27: 351362.
  • 19
    Kasashima Y,Ueno T,Tomita A,Goodship AE,Smith RK. Optimisation of bone marrow aspiration from the equine sternum for the safe recovery of mesenchymal stem cells. Equine Vet J 2011; 43: 288294.
  • 20
    Bourzac C,Smith LC,Vincent P,Beauchamp G,Lavoie JP,Laverty S. Isolation of equine bone marrow-derived mesenchymal stem cells: A comparison between three protocols. Equine Vet J 2010; 42: 519527.
  • 21
    Koch TG,Thomsen PD,Betts DH. Improved isolation protocol for equine cord blood-derived mesenchymal stromal cells. Cytotherapy 2009; 11: 443447.
  • 22
    Gittel C,Brehm W,Burk J,Juelke H,Ribitsch I. Isolation of mesenchymal stromal cells from solid tissues: Cell features after digestion versus migration. Regen Med 2011; 6 ( Suppl 2): 204204.
  • 23
    Corradetti B,Lange-Consiglio A,Barucca M,Cremonesi F,Bizzaro D. Size-sieved subpopulations of mesenchymal stem cells from intervascular and perivascular equine umbilical cord matrix. Cell Prolif 2011; 44: 330342.
  • 24
    Taylor SE,Clegg PD. Collection and propagation methods for mesenchymal stromal cells. Vet Clin North Am Equine Pract 2011; 27: 263274.
  • 25
    Crisan M,Yap S,Casteilla L,Chen CW,Corselli M,Park TS,Andriolo G,Sun B,Zheng B,Zhang L,Norotte C,Teng PN,Traas J,Schugar R,Deasy BM,Badylak S,Buhring HJ,Giacobino JP,Lazzari L,Huard J,Peault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3: 301313.
  • 26
    Reing JE,Zhang L,Myers-Irvin J,Cordero KE,Freytes DO,Heber-Katz E,Bedelbaeva K,McIntosh D,Dewilde A,Braunhut SJ,Badylak SF. Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng Part A 2009; 15: 605614.
  • 27
    Agrawal V,Johnson SA,Reing J,Zhang L,Tottey S,Wang G,Hirschi KK,Braunhut S,Gudas LJ,Badylak SF. Epimorphic regeneration approach to tissue replacement in adult mammals. Proc Natl Acad Sci USA 2010; 107: 33513355.
  • 28
    Agrawal V,Tottey S,Johnson SA,Freund JM,Siu BF,Badylak SF. Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng Part A 2011; 17: 24352443.
  • 29
    Calve S,Odelberg SJ,Simon HG. A transitional extracellular matrix instructs cell behavior during muscle regeneration. Dev Biol 2010; 344: 259271.
  • 30
    Danen EH,Sonnenberg A. Integrins in regulation of tissue development and function. J Pathol 2003; 201: 632641.
  • 31
    Voytik-Harbin SL,Brightman AO,Kraine MR,Waisner B,Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 1997; 67: 478491.
  • 32
    Badylak SF,Valentin JE,Ravindra AK,McCabe GP,Stewart-Akers AM. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 2008; 14: 18351842.
  • 33
    Valentin JE,Stewart-Akers AM,Gilbert TW,Badylak SF. Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds. Tissue Eng Part A 2009; 15: 16871694.
  • 34
    Ansaloni L,Cambrini P,Catena F,Di SS,Gagliardi S,Gazzotti F,Hodde JP,Metzger DW,D'Alessandro L,Pinna AD. Immune response to small intestinal submucosa (surgisis) implant in humans: Preliminary observations. J Invest Surg 2007; 20: 237241.
  • 35
    Kou PM,Babensee JE. Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. J Biomed Mater Res A 2011; 96: 239260.
  • 36
    Dahms SE,Piechota HJ,Dahiya R,Gleason CA,Hohenfellner M,Tanagho EA. Bladder acellular matrix graft in rats: Its neurophysiologic properties and mRNA expression of growth factors TGF-alpha and TGF-beta. Neurourol Urodyn 1998; 17: 3754.
  • 37
    Kleinman HK,Philp D,Hoffman MP. Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol 2003; 14: 526532.
  • 38
    Yang B,Zhang Y,Zhou L,Sun Z,Zheng J,Chen Y,Dai Y. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Methods 2010; 16: 12011211.
  • 39
    Tran KT,Griffith L,Wells A. Extracellular matrix signaling through growth factor receptors during wound healing. Wound Repair Regen 2004; 12: 262268.
  • 40
    Charge SB,Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev 2004; 84: 209238.
  • 41
    Deasy BM,Jankowski RJ,Huard J. Muscle-derived stem cells: Characterization and potential for cell-mediated therapy. Blood Cells Mol Dis 2001; 27: 924933.
  • 42
    Zantop T,Gilbert TW,Yoder MC,Badylak SF. Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction. J Orthop Res 2006; 24: 12991309.
  • 43
    Tottey S,Corselli M,Jeffries EM,Londono R,Peault B,Badylak SF. Extracellular matrix degradation products and low-oxygen conditions enhance the regenerative potential of perivascular stem cells. Tissue Eng Part A 2011; 17: 3744.
  • 44
    Beattie AJ,Gilbert TW,Guyot JP,Yates AJ,Badylak SF. Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds. Tissue Eng Part A 2009; 15: 11191125.
  • 45
    Gordon S,Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953964.
  • 46
    Martinez FO,Gordon S,Locati M,Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression. J Immunol 2006; 177: 73037311.
  • 47
    Martinez FO,Sica A,Mantovani A,Locati M. Macrophage activation and polarization. Front Biosci 2008; 13: 453461.
  • 48
    Stout RD,Jiang C,Matta B,Tietzel I,Watkins SK,Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 2005; 175: 342349.
  • 49
    Arnold L,Henry A,Poron F,Baba-Amer Y,van RN,Plonquet A,Gherardi RK,Chazaud B. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007; 204: 10571069.
  • 50
    Mantovani A,Sica A,Locati M. Macrophage polarization comes of age. Immunity 2005; 23: 344346.
  • 51
    Brown BN,Londono R,Tottey S,Zhang L,Kukla KA,Wolf MT,Daly KA,Reing JE,Badylak SF. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 2012; 8: 978987.
  • 52
    Tidball JG,Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 2010; 298: R1173R1187.
  • 53
    Valentin JE,Turner NJ,Gilbert TW,Badylak SF. Functional skeletal muscle formation with a biologic scaffold. Biomaterials 2010; 31: 74757484.
  • 54
    Soffler C,Hermanson JW. Muscular design in the equine interosseus muscle. J Morphol 2006; 267: 696704.
  • 55
    Pacini S,Spinabella S,Trombi L,Fazzi R,Galimberti S,Dini F,Carlucci F,Petrini M. Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses. Tissue Eng 2007; 13: 29492955.
  • 56
    Burk J,Brehm W. Stem cell therapy of tendon injuries—Clinical outcome in 98 cases. Pferdeheilkunde 2011; 27: 153161.
  • 57
    Schnabel LV,Lynch ME,van der Meulen MC,Yeager AE,Kornatowski MA,Nixon AJ. Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res 2009; 27: 13921398.
  • 58
    Nixon AJ,Dahlgren LA,Haupt JL,Yeager AE,Ward DL. Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res 2008; 69: 928937.
  • 59
    Del Bue M,Ricco S,Ramoni R,Conti V,Gnudi G,Grolli S. Equine adipose-tissue derived mesenchymal stem cells and platelet concentrates: Their association in vitro and in vivo. Vet Res Commun 2008; 32 ( Suppl 1): S51S55.
  • 60
    Durgam SS,Stewart AA,Caporali EH,Karlin WM,Stewart MC. Effect of tendon-derived progenitor cells on a collagenase-induced model of tendinitis in horses. Regen Med 2009; 4 ( Suppl 2): 2727.
  • 61
    Herthel DJ. Enhanced suspensory ligament healing in 100 horses by stem cells and other bone marrow components. Proc Am Ass equine Practnrs 2001; 47: 319321.
  • 62
    Carrade DD,Owens SD,Galuppo LD,Vidal MA,Ferraro GL,Librach F,Buerchler S,Friedman MS,Walker NJ,Borjesson DL. Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally derived equine mesenchymal stem cells in horses. Cytotherapy 2011; 13: 419430.
  • 63
    Carrade DD,Affolter VK,Outerbridge CA,Watson JL,Galuppo LD,Buerchler S,Kumar V,Walker NJ,Borjesson DL. Intradermal injections of equine allogeneic umbilical cord-derived mesenchymal stem cells are well tolerated and do not elicit immediate or delayed hypersensitivity reactions. Cytotherapy 2011; 13: 11801192.
  • 64
    Smith RK. Mesenchymal stem cell therapy for equine tendinopathy. Disabil Rehabil 2008; 30: 17521758.
  • 65
    Caniglia CJ,Schramme MC,Smith RK. The effect of intralesional injection of bone marrow derived mesenchymal stem cells and bone marrow supernatant on collagen fibril size in a surgical model of equine superficial digital flexor tendonitis. Equine Vet J 2012; 44: 587593.
  • 66
    Li X,Zhou SG,Imreh MP,Ahrlund-Richter L,Allen WR. Horse embryonic stem cell lines from the proliferation of inner cell mass cells. Stem Cells Dev 2006; 15: 523531.
  • 67
    Ahern BJ,Parvizi J,Boston R,Schaer TP. Preclinical animal models in single site cartilage defect testing: A systematic review. Osteoarthritis Cartilage 2009; 17: 705713.
  • 68
    McIlwraith CW,Frisbie DD,Rodkey WG,Kisiday JD,Werpy NM,Kawcak CE,Steadman JR. Evaluation of intra-articular mesenchymal stem cells to augment healing of microfractured chondral defects. Arthroscopy 2011; 27: 15521561.
  • 69
    Frisbie DD,Kisiday JD,Kawcak CE,Werpy NM,McIlwraith CW. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res 2009; 27: 16751680.
  • 70
    Ferris D,Frisbie DD,Kisiday J,McIlwraith CW,Hague B,Major M,Schneider R,Zubrod C,Watkins J,Kawcak C,Goodrich LR. Clinical evaluation of bone marrow-derived mesenchymal stem cells in naturally occurring joint disease. Regen Med 2009; 4 ( Suppl 2): 1616.
  • 71
    Fortier LA,Nixon AJ,Williams J,Cable CS. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res 1998; 59: 11821187.
  • 72
    Smith RK,Webbon PM. Harnessing the stem cell for the treatment of tendon injuries: Heralding a new dawn? Br J Sports Med 2005; 39: 582584.
  • 73
    Vidal MA,Kilroy GE,Johnson JR,Lopez MJ,Moore RM,Gimble JM. Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: Adipogenic and osteogenic capacity. Vet Surg 2006; 35: 601610.
  • 74
    Arnhold SJ,Goletz I,Klein H,Stumpf G,Beluche LA,Rohde C,Addicks K,Litzke LF. Isolation and characterization of bone marrow-derived equine mesenchymal stem cells. Am J Vet Res 2007; 68: 10951105.
  • 75
    Radcliffe CH,Flaminio MJ,Fortier LA. Temporal analysis of equine bone marrow aspirate during establishment of putative mesenchymal progenitor cell populations. Stem Cells Dev 2010; 19: 269282.
  • 76
    Braun J,Hack A,Weis-Klemm M,Conrad S,Treml S,Kohler K,Walliser U,Skutella T,Aicher WK. Evaluation of the osteogenic and chondrogenic differentiation capacities of equine adipose tissue-derived mesenchymal stem cells. Am J Vet Res 2010; 71: 12281236.
  • 77
    Ranera B,Lyahyai J,Romero A,Vazquez FJ,Remacha AR,Bernal ML,Zaragoza P,Rodellar C,Martin-Burriel I. Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Vet Immunol Immunopathol 2011; 144: 147154.
  • 78
    De Schauwer C,Piepers S,van de Walle GR,Demeyere K,Hoogewijs MK,Govaere JL,Braeckmans K,Van SA,Meyer E. In search for cross-reactivity to immunophenotype equine mesenchymal stromal cells by multicolor flow cytometry. Cytometry A 2012; 81A: 312323.
  • 79
    Dominici M,Le BK,Mueller I,Slaper-Cortenbach I,Marini F,Krause D,Deans R,Keating A,Prockop D,Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315317.
  • 80
    Ibrahim S,Saunders K,Kydd JH,Lunn DP,Steinbach F. Screening of anti-human leukocyte monoclonal antibodies for reactivity with equine leukocytes. Vet Immunol Immunopathol 2007; 119: 6380.
  • 81
    Guest DJ,Ousey JC,Smith MRW. Defining the expression of marker genes in equine mesenchymal stromal cells. Stem Cells Cloning Adv Appl 2008; 1: 19.
  • 82
    Hoynowski SM,Fry MM,Gardner BM,Leming MT,Tucker JR,Black L,Sand T,Mitchell KE. Characterization and differentiation of equine umbilical cord-derived matrix cells. Biochem Biophys Res Commun 2007; 362: 347353.
  • 83
    Hackett CH,Flaminio MJ,Fortier LA. Analysis of CD14 expression levels in putative mesenchymal progenitor cells isolated from equine bone marrow. Stem Cells Dev 2011; 20: 721735.
  • 84
    Lovati AB,Corradetti B,Lange CA,Recordati C,Bonacina E,Bizzaro D,Cremonesi F. Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells. Vet Res Commun 2011; 35: 103121.
  • 85
    Dhar M,Neilsen N,Beatty K,Eaker S,Adair H,Geiser D. Equine peripheral blood-derived mesenchymal stem cells: Isolation, identification, trilineage differentiation and effect of hyperbaric oxygen treatment. Equine Vet J 2012; 44: 600605.
  • 86
    Raabe O,Shell K,Wurtz A,Reich CM,Wenisch S,Arnhold S. Further insights into the characterization of equine adipose tissue-derived mesenchymal stem cells. Vet Res Commun 2011; 35: 355365.
  • 87
    Iacono E,Brunori L,Pirrone A,Pagliaro PP,Ricci F,Tazzari PL,Merlo B. Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton's jelly in the horse. Reproduction 2012; 143: 455468.
  • 88
    Violini S,Gorni C,Pisani LF,Ramelli P,Caniatti M,Mariani P. Isolation and differentiation potential of an equine amnion-derived stromal cell line. Cytotechnology 2012; 64: 17.
  • 89
    Lange-Consiglio A,Corradetti B,Bizzaro D,Magatti M,Ressel L,Tassan S,Parolini O,Cremonesi F. Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. J Tissue Eng Regen Med 2011; 6: 622635.
  • 90
    Mensing N,Gasse H,Hambruch N,Haeger JD,Pfarrer C,Staszyk C. Isolation and characterization of multipotent mesenchymal stromal cells from the gingiva and the periodontal ligament of the horse. BMC Vet Res 2011; 7: 42.
  • 91
    Pascucci L,Curina G,Mercati F,Marini C,Dall'aglio C,Paternesi B,Ceccarelli P. Flow cytometric characterization of culture expanded multipotent mesenchymal stromal cells (MSCs) from horse adipose tissue: Towards the definition of minimal stemness criteria. Vet Immunol Immunopathol 2011; 144: 499506.
  • 92
    de Mattos CA,Alves AL,Golim MA,Moroz A,Hussni CA,de Oliveira PG,Deffune E. Isolation and immunophenotypic characterization of mesenchymal stem cells derived from equine species adipose tissue. Vet Immunol Immunopathol 2009; 132: 303306.
  • 93
    Martinello T,Bronzini I,Maccatrozzo L,Iacopetti I,Sampaolesi M,Mascarello F,Patruno M. Cryopreservation does not affect the stem characteristics of multipotent cells isolated from equine peripheral blood. Tissue Eng Part C Methods 2010; 16: 771781.
  • 94
    Violini S,Ramelli P,Pisani LF,Gorni C,Mariani P. Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biol 2009; 10: 29.
  • 95
    Hackett CH,Greve L,Novakofski KD,Fortier LA. Comparison of gene-specific DNA methylation patterns in equine induced pluripotent stem cell lines with cells derived from equine adult and fetal tissues. Stem Cells Dev 2011; 21: 18031811.
  • 96
    Reed SA,Johnson SE. Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types. J Cell Physiol 2008; 215: 329336.
  • 97
    Vidal MA,Robinson SO,Lopez MJ,Paulsen DB,Borkhsenious O,Johnson JR,Moore RM,Gimble JM. Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet Surg 2008; 37: 713724.
  • 98
    Vidal MA,Kilroy GE,Lopez MJ,Johnson JR,Moore RM,Gimble JM. Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 2007; 36: 613622.
  • 99
    Koerner J,Nesic D,Romero JD,Brehm W,Mainil-Varlet P,Grogan SP. Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells. Stem Cells 2006; 24: 16131619.
  • 100
    Giovannini S,Brehm W,Mainil-Varlet P,Nesic D. Multilineage differentiation potential of equine blood-derived fibroblast-like cells. Differentiation 2008; 76: 118129.
  • 101
    Koch TG,Heerkens T,Thomsen PD,Betts DH. Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol 2007; 7: 26.
  • 102
    Gittel C,Burk J,Ribitsch I,Brehm W. Efficiency of adipogenic differentiation methods in mesenchymal stromal cells from diverse sources. Regen Med 2011; 6 ( Suppl 2): 203203.
  • 103
    Burk J,Ribitsch I,Gittel C,Juelke H,Kasper C,Staszyk C,Brehm W. Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources. Vet J 2012. in press; http://dx.doi.org/10.1016/j.tvjl.2012.06.004.
  • 104
    Toupadakis CA,Wong A,Genetos DC,Cheung WK,Borjesson DL,Ferraro GL,Galuppo LD,Leach JK,Owens SD,Yellowley CE. Comparison of the osteogenic potential of equine mesenchymal stem cells from bone marrow, adipose tissue, umbilical cord blood, and umbilical cord tissue. Am J Vet Res 2010; 71: 12371245.
  • 105
    Figueroa RJ,Koch TG,Betts DH. Osteogenic differentiation of equine cord blood multipotent mesenchymal stromal cells within coralline hydroxyapatite scaffolds in vitro. Vet Comp Orthop Traumatol 2011; 24: 354362.
  • 106
    Berg L,Koch T,Heerkens T,Bessonov K,Thomsen P,Betts D. Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood. Vet Comp Orthop Traumatol 2009; 22: 363370.
  • 107
    Taylor SE,Vaughan-Thomas A,Clements DN,Pinchbeck G,Macrory LC,Smith RK,Clegg PD. Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems. BMC Musculoskelet Disord 2009; 10: 27.
  • 108
    Saito S,Ugai H,Sawai K,Yamamoto Y,Minamihashi A,Kurosaka K,Kobayashi Y,Murata T,Obata Y,Yokoyama K. Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. FEBS Lett 2002; 531: 389396.
  • 109
    Nagy K,Sung HK,Zhang P,Laflamme S,Vincent P,Agha-Mohammadi S,Woltjen K,Monetti C,Michael IP,Smith LC,Nagy A. Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 2011; 7: 693702.