SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Tarnok A. Slide-based cytometry for cytomics—a minireview. Cytometry A 2006; 69A: 555562.
  • 2
    Carpenter AE,Jones TR,Lamprecht MR,Clarke C,Kang IH,Friman O,Guertin DA,Chang JH,Lindquist RA,Moffat J and others. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol 2006; 7: R100.
  • 3
    Lamprecht MR,Sabatini DM,Carpenter AE. CellProfiler: Free, versatile software for automated biological image analysis. Biotechniques 2007; 42: 7175.
  • 4
    Hamilton N. Quantification and its applications in fluorescent microscopy imaging. Traffic 2009; 10: 951961.
  • 5
    Huang D,Casale GP,Tian J,Lele SM,Pisarev VM,Simpson MA,Hemstreet GP, 3rd. Udp-glucose dehydrogenase as a novel field-specific candidate biomarker of prostate cancer. Int J Cancer 2010; 126: 315327.
  • 6
    Bodo J,Durkin L,Hsi ED. Quantitative in situ detection of phosphoproteins in fixed tissues using quantum dot technology. J Histochem Cytochem 2009; 57: 701708.
  • 7
    Waters JC. Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol 2009; 185: 11351148.
  • 8
    Robertson D,Isacke CM. Multiple immunofluorescence labeling of formalin-fixed paraffin-embedded tissue. Methods Mol Biol 2011; 724: 6977.
  • 9
    Remmele W,Stegner HE. [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue]. Pathologe 1987; 8: 138140.
  • 10
    Conway C,Dobson L,O'Grady A,Kay E,Costello S,O'Shea D. Virtual microscopy as an enabler of automated/quantitative assessment of protein expression in TMAs. Histochem Cell Biol 2008; 130: 447463.
  • 11
    Del Castillo P,Llorente AR,Stockert JC. Influence of fixation, exciting light and section thickness on the primary fluorescence of samples for microfluorometric analysis. Basic Appl Histochem 1989; 33: 251257.
  • 12
    Khandelwal S,Saxena RK. Age-dependent increase in green autofluorescence of blood erythrocytes. J Biosci 2007; 32: 11391145.
  • 13
    Vigneshwaran N,Bijukumar G,Karmakar N,Anand S,Misra A. Autofluorescence characterization of advanced glycation end products of hemoglobin. Spectrochim Acta A Mol Biomol Spectrosc 2005; 61: 163170.
  • 14
    Negre-Salvayre A,Salvayre R,Auge N,Pamplona R,Portero-Otin M. Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 2009; 11: 30713109.
  • 15
    Vicente Miranda H,Outeiro TF. The sour side of neurodegenerative disorders: the effects of protein glycation. J Pathol 2010; 221: 1325.
  • 16
    Chekir C,Nakatsuka M,Noguchi S,Konishi H,Kamada Y,Sasaki A,Hao L,Hiramatsu Y. Accumulation of advanced glycation end products in women with preeclampsia: possible involvement of placental oxidative and nitrative stress. Placenta 2006; 27: 225233.
  • 17
    Yu Y,Hanssen K,Kalyanaraman V,Chirindel A,Jenkins A,Nankervis A,Torjesen P,Scholz H,Henriksen T,Lorentzen B and others. Reduced soluble receptor for advanced glycation end-products (sRAGE) scavenger capacity precedes pre-eclampsia in Type 1 diabetes. BJOG 2012; 119: 15121520.
  • 18
    Baschong W,Suetterlin R,Laeng RH. Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). J Histochem Cytochem 2001; 49: 15651572.
  • 19
    Mosiman VL,Patterson BK,Canterero L,Goolsby CL. Reducing cellular autofluorescence in flow cytometry: an in situ method. Cytometry 1997; 30: 151156.
  • 20
    Schnell SA,Staines WA,Wessendorf MW. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 1999; 47: 719730.
  • 21
    Billinton N,Knight AW. Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal Biochem 2001; 291: 175197.
  • 22
    Viegas MS,Martins TC,Seco F, do Carmo A. An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues. Eur J Histochem 2007; 51: 5966.
  • 23
    Diaz G,Gonzalez FA,Romero E. A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images. J Biomed Inform 2009; 42: 296307.
  • 24
    Albertini MC,Teodori L,Piatti E,Piacentini MP,Accorsi A,Rocchi MB. Automated analysis of morphometric parameters for accurate definition of erythrocyte cell shape. Cytometry A 2003; 52A: 1218.
  • 25
    Cohen J. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 1960; 20: 3746.
  • 26
    Fleiss J,Cohen J. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ Psychol Meas 1973; 33: 6.
  • 27
    Ramasamy R,Yan SF,Schmidt AM. Receptor for AGE (RAGE): Signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 2011; 1243: 88102.
  • 28
    Heindl A,Dekan S,Ellinger I,Seewald AK. Towards a versatile automated cell-detection system for science and diagnostics. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 30453048.
  • 29
    Oliver EA,Buhimschi CS,Dulay AT,Baumbusch MA,Abdel-Razeq SS,Lee SY,Zhao G,Jing S,Pettker CM,Buhimschi IA. Activation of the receptor for advanced glycation end products system in women with severe preeclampsia. J Clin Endocrinol Metab 2011; 96: 689698.
  • 30
    Demir R,Akkoyunlu G. The fine and three-dimensional observations on the basal plate surface and anchoring villi in mature human placenta. Scanning 1998; 20: 253254.
  • 31
    Viola P,Jones M. Rapid object detection using a boosted cascade of simple features. 2001. p I-511I-518 vol.1.
  • 32
    Freund Y,Schapire R. Experiments with a New Boosting Algorithm. In International Conference on Machine Learning; 1996. p 148156.
  • 33
    Lienhart R,Maydt J. An extended set of Haar-like features for rapid object detection. 2002. p I-900I-903 vol.1.
  • 34
    Blair DC. Chapter 7: Evaluation. In: Van Rijsbergen CJ, editor. Information Retrieval, 2nd ed. London: Butterworths; 1979. 208 pp.
  • 35
    Landis JR,Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159174.
  • 36
    Fleiss J, Levin B,Paik M. Chapter 18: The Measurement of Interrater Agreement. In: Shewart WA, Samuel S, Wilks SS, editors. Statistical Methods for Rates and Proportions, 3rd Ed. Wiley-Interscience; 2003; ISBN 9780471526292.
  • 37
    Wilson SB,Emerson R. Spike detection: A review and comparison of algorithms. Clin Neurophysiol 2002; 113: 18731881.
  • 38
    Anjomshoaa A,Lin YH,Black MA,McCall JL,Humar B,Song S,Fukuzawa R,Yoon HS,Holzmann B,Friederichs J and others. Reduced expression of a gene proliferation signature is associated with enhanced malignancy in colon cancer. Br J Cancer 2008; 99: 966973.
  • 39
    Baschong W,Duerrenberger M,Mandinova A,Suetterlin R. Three-dimensional visualization of cytoskeleton by confocal laser scanning microscopy. Methods Enzymol 1999; 307: 173189.
  • 40
    Geismann P,Schneider G. A two-staged approach to vision-based pedestrian recognition using Haar and HOG features. Proc. of the IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 4–6 June 2008. p 554559.
  • 41
    Qing C,Georganas ND,Petriu EM. Real-time Vision-based Hand Gesture Recognition Using Haar-like Features. Proc. of the Instrumentation and Measurement Technology Conference (IMTC), Warsaw, Poland, 1–3 May 2007. p 16.
  • 42
    Jiang S,Zhou X,Kirchhausen T,Wong ST. Detection of molecular particles in live cells via machine learning. Cytometry A 2007; 71: 563575.
  • 43
    Zaritsky A,Natan S,Horev J,Hecht I,Wolf L,Ben-Jacob E,Tsarfaty I. Cell motility dynamics: A novel segmentation algorithm to quantify multi-cellular bright field microscopy images. PLoS One 2011; 6: e27593.
  • 44
    Nielsen B,Albregtsen F,Danielsen HE. Automatic segmentation of cell nuclei in Feulgen-stained histological sections of prostate cancer and quantitative evaluation of segmentation results. Cytometry A 2012; 81A: 588601.
  • 45
    Bessis M. Red cell shapes. An illustrated classification and its rationale. Nouv Rev Fr Hematol 1972; 12: 721745.
  • 46
    Banko M,Brill E. Scaling to very very large corpora for natural language disambiguation. Proceedings of the 39th Annual Meeting on Association for Computational Linguistics. Toulouse, France: Association for Computational Linguistics; 2001. p 2633.
  • 47
    Selinummi J,Ruusuvuori P,Podolsky I,Ozinsky A,Gold E,Yli-Harja O,Aderem A,Shmulevich I. Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images. PLoS One 2009; 4: e7497.
  • 48
    Camp RL,Charette LA,Rimm DL. Validation of tissue microarray technology in breast carcinoma. Lab Invest 2000; 80: 19431949.
  • 49
    Muehlenbachs A,Fried M,McGready R,Harrington WE,Mutabingwa TK,Nosten F,Duffy PE. A novel histological grading scheme for placental malaria applied in areas of high and low malaria transmission. J Infect Dis 2010; 202: 16081616.