SEARCH

SEARCH BY CITATION

Literature Cited

  • 1
    Herschel JFW. On a case of superficial colour presented by a homogeneous liquid internally colourless. Philos Trans R Soc London 1845;135:143145.
  • 2
    Stokes GG. On the change of refractibility of light. Philos Trans R Soc London 1852;142:463562.
  • 3
    Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikr Anat 1873;9:413418.
  • 4
    Helmholtz H. Die theoretischen Grenzen für die Leistungsfähigkeit der Mikroskope. Ann Phys 1874;557584.
  • 5
    Baum E.Fluoreszenz-Mikroskopie. Die Umschau 1932;36:418.
  • 6
    Heimstadt O.Das Fluoreszenzmikroskop. Z wiss Mikr 1911;28:330337.
  • 7
    Reichert K. Das Fluoreszenzmikroskop.Phys Z 1911;12:10101011.
  • 8
    Lehmann H.Das Lumineszenzmikroskop, seine Grundlagen und seine Anwendungen. Z wiss Mikr 1913;30:417.
  • 9
    Ellinger P, Hirt A. Mikroskopische Untersuchungen an lebenden Organen. I. Mitt. Methodik. Intravitalmikroskopie. Z ges Anat EntwGesch 1929;90:791.
  • 10
    Coons AH, Creech HJ, Norman Jones R, Berliner E. The Demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J Immunol 1942;45:159170.
  • 11
    Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 1992;111:229233.
  • 12
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science 1994;263:802805.
  • 13
    Heim R, Tsien RY. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 1996;6:178182.
  • 14
    Patterson G, Davidson M, Manley S, Lippincott-Schwartz J. Superresolution imaging using single-molecule localization. Annu Rev Phys Chem 2010;61:345367.
  • 15
    Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: Super-resolution imaging of cells. Cell 2010;143:10471058.
  • 16
    Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy. J Cell Biol 2010;190:165175.
  • 17
    Hell SW. Far-field optical nanoscopy. Science 2007;316:11531158.
  • 18
    Kanchanawong P, Waterman CM. Advances in light-based imaging of three-dimensional cellular ultrastructure. Curr Opin Cell Biol 2012;24:125133.
  • 19
    Minsky M. Minsky's microscopy apparatus. US Pat3,013,467,1961.
  • 20
    Davidovits P, Egger MD. Photomicrography of corneal endothelial cells in vivo. Nature 1973;244:366367.
  • 21
    Cremer C, Cremer T. Considerations on a laser-scanning-microscope with high resolution and depth of field. Microsc Acta 1978;81:3144.
  • 22
    Sheppard CJ, Wilson T. The theory of the direct-view confocal microscope. J Microsc 1981;124:107117.
  • 23
    Nipkow P.Elektrisches Teleskop. Patentschrift Nr30, 105,1884.
  • 24
    Egger MD, Petran M. New reflected-light microscope for viewing unstained brain and ganglion cells. Science 1967;157:305307.
  • 25
    Tanaami T, Otsuki S, Tomosada N, Kosugi Y, Shimizu M, Ishida H. High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Appl Opt 2002;41:47044708.
  • 26
    Cremer C, Cremer T. 4 pi Punkthologramme: Physikalische Grundlagen und mögliche Anwendungen. Enclosure to Patent Application DE 2116521. In: Patentamt D, editor.“Verfahren zur Darstellung bzw. Modifikation von Objekt-Details, deren Abmessungen außerhalb der sichtbaren Wellenlängen liegen.”Germany;1971.
  • 27
    Hell SW, Stelzer EH, Lindek S, Cremer C. Confocal microscopy with an increased detection aperture: Type-B 4 pi confocal microscopy. Opt Lett 1994;19:222224.
  • 28
    Göppert-Mayer M. Über Elementarakte mit zwei Quantensprungen. Ann Phys 1931;9:273294.
  • 29
    Kaiser W, Garrett CGB. Two-photon excitation in CaF2:Eu2+. Phys Rev Lett 1961;7:229231.
  • 30
    Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990;248:7376.
  • 31
    Xu C, Zipfel W, Shear JB, Williams RM, Webb WW. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 1996;93:1076310768.
  • 32
    Hirschfeld T. Total reflection fluorescence. Can Spectrosc 1965;10:128.
  • 33
    Tweet AG, Gaines GL, Bellamy WD. Fluorescence of chlorophyll a monolayers. J Chem Phys 1964;40:25962600.
  • 34
    Carniglia CK, Mandel L, Drexgage KH. Absorption and emission of evanescent photons. J Opt Soc Am 1972;62:479486.
  • 35
    Axelrod D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 1981;89:141145.
  • 36
    Siedentopf H, Zsigmondy R. Über Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann Phys 1903;10:139.
  • 37
    Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 2004;305:10071009.
  • 38
    Fuchs E, Jaffe J, Long R, Azam F. Thin laser light sheet microscope for microbial oceanography. Opt Express 2002;10:145154.
  • 39
    Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 2008;322:10651069.
  • 40
    Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 1976;16:10551069.
  • 41
    Edidin M, Zagyansky Y, Lardner TJ. Measurement of membrane protein lateral diffusion in single cells. Science 1976;191:466468.
  • 42
    Rabut G, Ellenberg J. Photobleaching techniques to study mobility and mo- lecular dynamics of proteins in live cells: FRAP, iFRAP, and FLIP. In: Goldman R, Spector DL, editors.Live Cell Imaging A Laboratory Manual.Cold Spring Harbor:Cold Spring Harbor Laboratory Press;2005. pp101126.
  • 43
    Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J. Nuclear membrane dynamics and reassembly in living cells: Targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 1997;138:11931206.
  • 44
    Soumpasis DM. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J 1983;41:9597.
  • 45
    Nehls S, Snapp EL, Cole NB, Zaal KJ, Kenworthy AK, Roberts TH, Ellenberg J, Presley JF, Siggia E, Lippincott-Schwartz J. Dynamics and retention of misfolded proteins in native ER membranes. Nat Cell Biol 2000;2:288295.
  • 46
    Cole NB, Smith CL, Sciaky N, Terasaki M, Edidin M, Lippincott-Schwartz J. Diffusional mobility of Golgi proteins in membranes of living cells. Science 1996;273:797801.
  • 47
    Patterson GH, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 2002;297:18731877.
  • 48
    Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 2002;99:1265112656.
  • 49
    Ando R, Mizuno H, Miyawaki A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 2004;306:13701373.
  • 50
    Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C, Salih A, Spindler KD, Nienhaus GU. EosF P,a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA 2004;101:1590515910.
  • 51
    Magde D, Elson E, Webb WW. Thermodynamic fluctuations in a reacting system—Measurement by fluorescence correlation spectroscopy. Phys Rev Lett 1972;29:705708.
  • 52
    Petersen NO, Elson E. Measurements of diffusion and chemical kinetics by fluorescence photobleaching recovery and fluorescence correlation spectroscopy. Methods Enzymol 1986;130:454484.
  • 53
    Onsager L. Reciprocal relations in irreversible processes. I. Phys Rev 1931;37:405426.
  • 54
    Chen Y, Muller JD, So PT, Gratton E. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 1999;77:553567.
  • 55
    Chen Y, Tekmen M, Hillesheim L, Skinner J, Wu B, Muller JD. Dual-color photon-counting histogram. Biophys J 2005;88:21772192.
  • 56
    Ruan Q, Cheng MA, Levi M, Gratton E, Mantulin WW. Spatial-temporal studies of membrane dynamics: Scanning fluorescence correlation spectroscopy (SFCS). Biophys J 2004;87:12601267.
  • 57
    Digman MA, Dalal R, Horwitz AF, Gratton E. Mapping the number of molecules and brightness in the laser scanning microscope. Biophys J 2008;94:23202332.
  • 58
    Petersen NO, Hoddelius PL, Wiseman PW, Seger O, Magnusson KE. Quantitation of membrane receptor distributions by image correlation spectroscopy: Concept and application. Biophys J 1993;65:11351146.
  • 59
    Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 2005;89:13171327.
  • 60
    Digman MA, Sengupta P, Wiseman PW, Brown CM, Horwitz AR, Gratton E. Fluctuation correlation spectroscopy with a laser-scanning microscope: Exploiting the hidden time structure. Biophys J 2005;88:L33L36.
  • 61
    Berland KM, So PT, Gratton E. Two-photon fluorescence correlation spectroscopy: Method and application to the intracellular environment. Biophys J 1995;68:694701.
  • 62
    Thompson NL, Burghardt TP, Axelrod D. Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys J 1981;33:435454.
  • 63
    Wohland T, Shi X, Sankaran J, Stelzer EH. Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt Express 2010;18:1062710641.
  • 64
    Barak LS, Webb WW. Diffusion of low density lipoprotein-receptor complex on human fibroblasts. J Cell Biol 1982;95:846852.
  • 65
    Gelles J, Schnapp BJ, Sheetz MP. Tracking kinesin-driven movements with nanometre-scale precision. Nature 1988;331:450453.
  • 66
    Bohs LN, Friemel BH, McDermott BA, Trahey GE. A real time system for quantifying and displaying two-dimensional velocities using ultrasound. Ultrasound Med Biol 1993;19:751761.
  • 67
    Lee GM, Ishihara A, Jacobson KA. Direct observation of brownian motion of lipids in a membrane. Proc Natl Acad Sci USA 1991;88:62746278.
  • 68
    Anderson CM, Georgiou GN, Morrison IE, Stevenson GV, Cherry RJ. Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. J Cell Sci 1992;101 ( Part 2):415425.
  • 69
    Manders EMM, Verbeek FJ, Aten JA. Measurements of co-localization of objects in dual-color confocal images. J Microsc 1993;169:375382.
  • 70
    van Steensel B, van Binnendijk EP, Hornsby CD, van der Voort HT, Krozowski ZS, de Kloet ER, van Driel R. Partial colocalization of glucocorticoid and mineralocorticoid receptors in discrete compartments in nuclei of rat hippocampus neurons. J Cell Sci 1996;109 ( Part 4):787792.
  • 71
    Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 2004;86:39934003.
  • 72
    Li Q, Lau A, Morris TJ, Guo L, Fordyce CB, Stanley EF. A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: Analysis by quantitative immunocolocalization. J Neurosci 2004;24:40704081.
  • 73
    Schwille P, Meyer-Almes FJ, Rigler R. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 1997;72:18781886.
  • 74
    Förster T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Physik 1948;437:5575.
  • 75
    Stryer L, Haugland RP. Energy transfer: A spectroscopic ruler. Proc Natl Acad Sci USA 1967;58:719726.
  • 76
    Jovin TM, Arndt-Jovin DJ. Luminescence digital imaging microscopy. Annu Rev Biophys Biophys Chem 1989;18:271308.
  • 77
    Mekler VM. A photochemical technique to enhance sensitivity of detection of fluorescence resonance energy transfer. Photochem Photobiol 1994;59:615620.
  • 78
    Mekler VM, Averbakh AZ, Sudarikov AB, Kharitonova OV. Fluorescence energy transfer-sensitized photobleaching of a fluorescent label as a tool to study donor-acceptor distance distributions and dynamics in protein assemblies: Studies of a complex of biotinylated IgM with streptavidin and aggregates of concavalin A. Photochem Photobiol 1997;40:278287.
  • 79
    Bunting JR, Cathou RE. Energy transfer distance measurements in immunoglobulins. II. Localization of the hapten binding sites and the interheavy chain disulfide bond in rabbit antibody. J Mol Biol 1973;77:223235.
  • 80
    Weber G. Dependence of polarization of the fluorescence on the concentration. Trans Faraday Soc 1954;50:552555.
  • 81
    Yeow EK, Clayton AH. Enumeration of oligomerization states of membrane proteins in living cells by homo-FRET spectroscopy and microscopy: Theory and application. Biophys J 2007;92:30983104.
  • 82
    Grimaldi FM.Physicomathesis de lumine, coloribus, et iride, aliisque annexis.Bologna, Italy:Vittorio Bonati;1665.
  • 83
    Huygens C.Traité de la Lumiere.Leiden, Netherlands:Pieter van der Aa;1690.
  • 84
    Young T. The Bakerian lecture: Experiments and calculations relative to physical optics. Philos Trans R Soc London 1804;94:116.
  • 85
    Fresnel A-J.Memoir on the diffraction of light. The Wave Theory of Light. New York: American Book Company.1819. pp 79145.
  • 86
    Fraunhofer J. Bestimmung des Brechungs- und des Farben-Zerstreuungs-Vermoegens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernroehre. In: Denkschriften (Memoirs) of the Bavarian Academy of Sciences, volume 5, 193226 1814.
  • 87
    Fraunhofer J. Bestimmung des Brechungs- und des Farben-Zerstreuungs-Vermoegens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernroehre. Reprinted with additional findings. Annalen der Physik, 56:264313.1817.
  • 88
    Fraunhofer J. Neue Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze desselben. In: Memoirs (Denkschriften) of the Bavarian Academy of Sciences, volume 8, 176,1821.
  • 89
    Airy GB. On the diffraction of an object-glass with circular aperture. Trans Cambridge Philos Soc 1835;5:283291.
  • 90
    Strutt JWBR. On the manufacture and theory of diffraction-gratings. Philos Mag 1874;47:193205.
  • 91
    Strutt JWBR. Resolving, or separating, power of optical instruments. Philos Mag 1879;8:261274.
  • 92
    Sparrow CM. On spectroscopic resolving power. Astrophys J 1916;44:7686.
  • 93
    Pawley J.Handbook of Biological Confocal Microscopy.New York: Springer;2006.1016 p.
  • 94
    Synge EH. A suggested method for extending the microscopic resolution into the ultramicroscopic region. Philos Mag 1928;6:356362.
  • 95
    O'Keefe JA. Resolving power of visible light. J Opt Soc Am 1956;46:359361.
  • 96
    Ash EA, Nicholls G. Super-resolution aperture scanning microscope. Nature 1972;237:510512.
  • 97
    Lewis A, Isaacson M, Harootunian A, Murray A. Development of a 500 Å spatial resolution light microscope. Ultramicroscopy 1984;13:227232.
  • 98
    Pohl DW, Denk W, Lanz M. Optical stethoscopy: Image recording with resolution λ/20. Appl Phys Lett 1984;44:651653.
  • 99
    Wilson T, Neil MA, Juskaitis R. Real-time three-dimensional imaging of macroscopic structures. J Microsc 1998;191:116118.
  • 100
    Heintzmann R, Cremer C. Lateral modulated excitation microscopy: Improvement of resolution by using a diffraction grating. Proc SPIE 1999;3568:185195.
  • 101
    Gustafsson MG. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 2000;198:8287.
  • 102
    Gustafsson MG, Shao L, Carlton PM, Wang CJ, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW. Three-dimensional resolution doubling in wide-fieldfluorescence microscopy by structured illumination. Biophys J 2008;94:49574970.
  • 103
    Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 2008;320:13321336.
  • 104
    Heintzmann R, Jovin TM, Cremer C. Saturated patterned excitation microscopy—A concept for optical resolution improvement. J Opt Soc Am A 2002;19:15991609.
  • 105
    Gustafsson MG. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 2005;102:1308113086.
  • 106
    Hirvonen LM, Wicker K, Mandula O, Heintzmann R. Structured illumination microscopy of a living cell. Eur Biophys J 2009;38:807812.
  • 107
    Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MG. Super-resolution video microscopy of live cells by structured illumination. Nat Methods 2009;6:339342.
  • 108
    Einstein A. Strahlungsemission und absorption nach der Quantentheorie. Verhandlungen der Deutschen Physikalischen Gesellschaft 1916;18:318323.
  • 109
    Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt Lett 1994;19:780782.
  • 110
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 2000;97:82068210.
  • 111
    Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW. Spherical nanosized focal spot unravels the interior of cells. Nat Methods 2008;5:539544.
  • 112
    Moneron G, Hell SW. Two-photon excitation STED microscopy. Opt Express 2009;17:1456714573.
  • 113
    Ding JB, Takasaki KT, Sabatini BL. Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 2009;63:429437.
  • 114
    Donnert G, Keller J, Wurm CA, Rizzoli SO, Westphal V, Schonle A, Jahn R, Jakobs S, Eggeling C, Hell SW. Two-color far-field fluorescence nanoscopy. Biophys J 2007;92:L67L69.
  • 115
    Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 2008;320:246249.
  • 116
    Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 2009;457:11591162.
  • 117
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006;313:16421645.
  • 118
    Hess ST, Girirajan TP, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 2006;91:42584272.
  • 119
    Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006;3:793795.
  • 120
    Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 2008;47:61726176.
  • 121
    Cheezum MK, Walker WF, Guilford WH. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 2001;81:23782388.
  • 122
    Thompson RE, Larson DR, Webb WW. Precise nanometer localization analysis for individual fluorescent probes. Biophys J 2002;82:27752783.
  • 123
    Members of the Technical Staff of Bell Telephone Laboratories (AT&T).Transmission Systems for Communications, Vol.2.1959. pp 2634.
  • 124
    Shannon CE. Communication in the presence of noise. Proc Inst Radio Eng 1949;37:1021.
  • 125
    Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008;319:810813.
  • 126
    Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci USA 2009;106:31253130.
  • 127
    Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 2008;5:527529.
  • 128
    Pavani SR, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, Piestun R, Moerner WE. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci USA 2009;106:29952999.
  • 129
    Tang J, Akerboom J, Vaziri A, Looger LL, Shank CV. Near-isotropic 3D optical nanoscopy with photon-limited chromophores. Proc Natl Acad Sci USA 2010;107:1006810073.
  • 130
    York AG, Ghitani A, Vaziri A, Davidson MW, Shroff H. Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes. Nat Methods 2011;8:327333.
  • 131
    Vaziri A, Tang J, Shroff H, Shank CV. Multilayer three-dimensional super resolution imaging of thick biological samples. Proc Natl Acad Sci USA 2008;105:2022120226.
  • 132
    Hess ST, Gould TJ, Gudheti MV, Maas SA, Mills KD, Zimmerberg J. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci USA 2007;104:1737017375.
  • 133
    Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 2009;6:153159.
  • 134
    Renz M, Daniels BR, Vamosi G, Arias IM, Lippincott-Schwartz J. Plasticity of the asialoglycoprotein receptor deciphered by ensemble FRET imaging and single-molecule counting PALM imaging. Proc Natl Acad Sci USA 2012;109:E2989E2997.
  • 135
    Shroff H, Galbraith CG, Galbraith JA, Betzig E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 2008;5:417423.
  • 136
    Wombacher R, Heidbreder M, van de Linde S, Sheetz MP, Heilemann M, Cornish VW, Sauer M. Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 2010;7(9):717719.
  • 137
    Klein T, Loschberger A, Proppert S, Wolter S, van de Linde S, Sauer M. Live-cell dSTORM with SNAP-tag fusion proteins. Nat Methods 2011;8:79.
  • 138
    Jones SA, Shim SH, He J, Zhuang X. Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 2011;8:499508.
  • 139
    Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 2008;5:155157.