SEARCH

SEARCH BY CITATION

Literature Cited

  • 1
    Gordon GW, Berry G, Liang XH, Levine B, Herman B. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 1998;74:27022713.
  • 2
    Berney C, Danuser G. FRET or no FRET: A quantitative comparison. Biophys J 2003;84:39924010.
  • 3
    Sun Y, Hays NM, Periasamy A, Davidson MW, Day RN. Monitoring protein interactions in living cells with fluorescence lifetime imaging microscopy. Imaging and Spectroscopic Analysis of Living Cells: Optical and Spectroscopic Techniques 2012;371.
  • 4
    Gu Y, Di W, Kelsell D, Zicha D. Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing. J Microsc 2004;215:162173.
  • 5
    Elangovan M, Wallrabe H, Chen Y, Day RN, Barroso M, Periasamy A. Characterization of one-and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 2003;29:5873.
  • 6
    Suhling K, Siegel J, Phillips D, French PMW, Lévęque-Fort S, Webb SED, Davis DM. Imaging the environment of green fluorescent protein. Biophys J 2002;83:35893595.
  • 7
    Zimmermann T, Rietdorf J, Pepperkok R. Spectral imaging and its applications in live cell microscopy. FEBS Lett 2003;546:8792.
  • 8
    Garini Y, Young I, McNamara G. Spectral imaging: principles and applications. Cytometry A 2006;69A:735747.
  • 9
    Goddard G, Martin JC, Naivar M, Goodwin PM, Graves SW, Habbersett R, Nolan JP, Jett JH. Single particle high resolution spectral analysis flow cytometry. Cytometry A 2006;69A:842851.
  • 10
    Thaler C, Vogel S. Quantitative linear unmixing of CFP and YFP from spectral images acquired with two-photon excitation. Cytometry A 2006;69A:904911.
  • 11
    Chen Y, Mauldin JP, Day RN, Periasamy A. Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. J Microsc 2007;228:139152.
  • 12
    Nikolaev VO, Bünemann M, Hein L, Hannawacker A, Lohse MJ. Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 2004;279:3721537218.
  • 13
    Börner S, Schwede F, Schlipp A, Berisha F, Calebiro D, Lohse MJ, Nikolaev VO. FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Prot 2011;6:427438.
  • 14
    Ponsioen B, Zhao J, Riedl J, Zwartkruis F, Van Der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 2004;5:11761180.
  • 15
    Lissandron V, Terrin A, Collini M, D'alfonso L, Chirico G, Pantano S, Zaccolo M. Improvement of a FRET-based indicator for cAMP by linker design and stabilization of donor–acceptor interaction. J Mol Biol 2005;354:546555.
  • 16
    Blackman BE, Horner K, Heidmann J, Wang D, Richter W, Rich TC, Conti M. PDE4D and PDE4B function in distinct subcellular compartments in mouse embryonic fibroblasts. J. Biol Chem 2011;286:1259012601.
  • 17
    Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DMF, Karpen JW. Cyclic nucleotide–gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J. Gen Physiol 2000;116:147162.
  • 18
    Clegg RM Fluorescence resonance energy transfer. Curr Opin Biotechnol 1995;6:103110.
  • 19
    Carpenter A, Jones T, Lamprecht M, Clarke C, Kang I, Friman O, Guertin D, Chang J, Lindquist R, Moffat J. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 2006;7:R100.
  • 20
    Galperin E, Verkhusha VV, Sorkin A. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells. Nat Meth 2004;1:209217.
  • 21
    Xia Z, Liu Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J 2001;81:23952402.
  • 22
    Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC. Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012;17:40474132.
  • 23
    Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 2012;64:299336.
  • 24
    Padilla-Parra S, Tramier M. FRET microscopy in the living cell: Different approaches, strengths and weaknesses. BioEssays 2012;34:369376.
  • 25
    Zhou X, Herbst-Robinson KJ, Zhang J. Visualizing dynamic activities of signaling enzymes using genetically encodable FRET-based biosensors: From designs to applications. Imaging and Spectroscopic Analysis of Living Cells: Optical and Spectroscopic Techniques 2012;317..
  • 26
    Zaccolo M. Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ Res 2004;94:866873.
  • 27
    Steinkamp JA. Fluorescence lifetime flow cytometry. Emerging Tools for Single-Cell Analysis 2002;175196.
  • 28
    Chang CI. Hyperspectral imaging: Techniques for Spectral Detection and Classification. Kluwer Academy, Plenum Publishers: 2003.
  • 29
    Keshava N, Mustard JF. Spectral unmixing. IEEE Signal Process Mag 2002;19:4457.
  • 30
    Leavesley SJ, Annamdevula N, Boni J, Stocker S, Grant K, Troyanovsky B, Rich TC, Alvarez DF. Hyperspectral imaging microscopy for identification and quantitative analysis of fluorescently-labeled cells in highly autofluorescent tissue. J Biophotonics 2012;5:6784.
  • 31
    Lerner JM, Gat N, Wachman E. Approaches to spectral imaging hardware. Curr Protoc Cyto 2010;53:112.
  • 32
    Williams P, Hunt A Jr. ER Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering. Remote Sens. Environ. 2002;82:446456.
  • 33
    Harris AT. Spectral mapping tools from the earth sciences applied to spectral microscopy data. Cytometry A 2006;69A:872879.
  • 34
    Farrand WH, Harsanyi JC. Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique. Remote Sens Environ 1997;59:6476.
  • 35
    Fereidouni F, Bader AN, Gerritsen HC. Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images. Optics Express 2012;20:1272912741.
  • 36
    Novo D, Grégori G, Rajwa B. Generalized unmixing model for multispectral flow cytometry utilizing nonsquare compensation matrices. Cytometry A 2013;83A:508520.