SEARCH

SEARCH BY CITATION

Literature Cited

  • 1
    Khanna KK, Jackson SP. DNA double-strand breaks: Signaling, repair and the cancer connection. Nat Genet 2001;27:247-254.
  • 2
    Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002;23:687-696.
  • 3
    Cline SD, Hanawalt PC. Who's on first in the cellular response to DNA damage? Nat Rev Mol Cell Biol 2003;4:361-372.
  • 4
    Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998;273:5858-5868.
  • 5
    Redon CE, Nakamura AJ, Sordet O, Dickey JS, Gouliaeva K, Tabb B, Lawrence S, Kinders RJ, Bonner WM, Sedelnikova OA. gamma-H2AX detection in peripheral blood lymphocytes, splenocytes, bone marrow, xenografts, and skin. Methods Mol Biol 2011;682:249-270.
  • 6
    Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 2003;100:5057-5062.
  • 7
    Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, Bonner WM. The use of gamma-H2AX as a biodosimeter for total-body radiation exposure in non-human primates. PLoS One 2010;5:e15544.
  • 8
    Redon CE, Nakamura AJ, Zhang YW, Ji JJ, Bonner WM, Kinders RJ, Parchment RE, Doroshow JH, Pommier Y. Histone gammaH2AX and poly(ADP-ribose) as clinical pharmacodynamic biomarkers. Clin Cancer Res 2010;16:4532-4542.
  • 9
    Redon CE, Nakamura AJ, Martin OA, Parekh PR, Weyemi US, Bonner WM. Recent developments in the use of gamma-H2AX as a quantitative DNA double-strand break biomarker. Aging (Albany NY) 2011;3:168-174.
  • 10
    Redon CE, Weyemi U, Parekh PR, Huang D, Burrell AS, Bonner WM. gamma-H2AX and other histone post-translational modifications in the clinic. Biochim Biophys Acta 2012;1819:743-756.
  • 11
    Rothkamm K, Horn S. gamma-H2AX as protein biomarker for radiation exposure. Ann Ist Super Sanita 2009;45:265-271.
  • 12
    Muslimovic A, Johansson P, Hammarsten O. Measurement of H2AX phosphorylation as a marker of ionizing radiation induced cell damage. In: Nenoi M, editor. Current Topics in Ionizing Radiation Research. Rijeka: InTech; 2012. pp 3-20.
  • 13
    Roch-Lefèvre S, Valente M, Voisin P, arquinero JF. Suitability of the ?-H2AX assay for human radiation biodosimetry. In: Nenoi M, editor. Current Topics in Ionizing Radiation Research. Rijeka: InTech; 2012. pp 21-30.
  • 14
    Ivashkevich A, Redon CE, Nakamura AJ, Martin RF, Martin OA. Use of the gamma-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett 2012;327:123-133.
  • 15
    Ivashkevich AN, Martin OA, Smith AJ, Redon CE, Bonner WM, Martin RF, Lobachevsky PN. gammaH2AX foci as a measure of DNA damage: A computational approach to automatic analysis. Mutat Res 2011;711:49-60.
  • 16
    Qvarnstrom OF, Simonsson M, Johansson KA, Nyman J, Turesson I. DNA double strand break quantification in skin biopsies. Radiother Oncol 2004;72:311-317.
  • 17
    Cai Z, Vallis KA, Reilly RM. Computational analysis of the number, area and density of gamma-H2AX foci in breast cancer cells exposed to (111)In-DTPA-hEGF or gamma-rays using Image-J software. Int J Radiat Biol 2009;85:262-271.
  • 18
    Bocker W, Iliakis G. Computational Methods for analysis of foci: Validation for radiation-induced gamma-H2AX foci in human cells. Radiat Res 2006;165:113-124.
  • 19
    Barber PR, Locke RJ, Pierce GP, Rothkamm K, Vojnovic B. Gamma-H2AX foci counting: image processing and control software for high-content screening. Proc SPIE 2007.
  • 20
    Markova E, Schultz N, Belyaev IY. Kinetics and dose-response of residual 53BP1/gamma-H2AX foci: Co-localization, relationship with DSB repair and clonogenic survival. Int J Radiat Biol 2007;83:319-329.
  • 21
    Roch-Lefevre S, Mandina T, Voisin P, Gaetan G, Mesa JE, Valente M, Bonnesoeur P, García O, Voisin P, Roy L. Quantification of gamma-H2AX foci in human lymphocytes: A method for biological dosimetry after ionizing radiation exposure. Radiat Res 2010;174:185-194.
  • 22
    Runge R, Hiemann R, Wendisch M, Kasten-Pisula U, Storch K, Zophel K, Fritz C, Roggenbuck D, Wunderlich G, Conrad K, et al. Fully automated interpretation of ionizing radiation-induced gammaH2AX foci by the novel pattern recognition system AKLIDES(R). Int J Radiat Biol 2012;88:439-447.
  • 23
    Willitzki A, Hiemann R, Peters V, Sack U, Schierack P, Rodiger S, Anderer U, Conrad K, Bogdanos DP, Reinhold D, et al. New platform technology for comprehensive serological diagnostics of autoimmune diseases. Clin Dev Immunol 2012;2012:284740.
  • 24
    Jucha A, Wegierek-Ciuk A, Koza Z, Lisowska H, Wojcik A, Wojewodzka M, Lankoff A. FociCounter: A freely available PC programme for quantitative and qualitative analysis of gamma-H2AX foci. Mutat Res 2010;696:16-20.
  • 25
    Furia L, Pelicci PG, Faretta M. A computational platform for robotized fluorescence microscopy (II): DNA damage, replication, checkpoint activation, and cell cycle progression by high-content high-resolution multiparameter image-cytometry. Cytometry A 2013;83:344-355.
  • 26
    Kim S, Jun DH, Kim HJ, Jeong KC, Lee CH. Development of a high-content screening method for chemicals modulating DNA damage response. J Biomol Screen 2011;16:259-265.
  • 27
    Valente M, Voisin P, Laloi P. Automated gamma-H2AX focus scoring method for human lymphocytes after ionizing radiation exposure. Radiat Meas 2011;46:871-876.
  • 28
    Turner HC, Brenner DJ, Chen Y, Bertucci A, Zhang J, Wang H, Lyulko OV, Xu Y, Shuryak I, Schaefer J, et al. Adapting the gamma-H2AX assay for automated processing in human lymphocytes. I. Technological aspects. Radiat Res 2011;175:282-290.
  • 29
    Garty G, Chen Y, Salerno A, Turner H, Zhang J, Lyulko O, Bertucci A, Xu Y, Wang H, Simaan N, et al. The RABIT: A rapid automated biodosimetry tool for radiological triage. Health Phys 2010;98:209-217.
  • 30
    Garty G, Chen Y, Turner HC, Zhang J, Lyulko OV, Bertucci A, Xu Y, Wang H, Simaan N, Randers-Pehrson G, et al. The RABiT: A rapid automated biodosimetry tool for radiological triage. II. Technological developments. Int J Radiat Biol 2011;87:776-790.
  • 31
    Hiemann R, Hilger N, Sack U, Weigert M. Objective quality evaluation of fluorescence images to optimize automatic image acquisition. Cytometry A 2006;69:182-184.
  • 32
    Hiemann R, Hilger N, Michel J, Nitschke J, Bohm A, Anderer U, Weigert M, Sack U. Automatic analysis of immunofluorescence patterns of HEp-2 cells. Ann NY Acad Sci 2007;1109:358-371.
  • 33
    Hiemann R, Buttner T, Krieger T, Roggenbuck D, Sack U, Conrad K. Challenges of automated screening and differentiation of non-organ specific autoantibodies on HEp-2 cells. Autoimmun Rev 2009;9:17-22.
  • 34
    Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y. GammaH2AX and cancer. Nat Rev Cancer 2008;8:957-967.
  • 35
    Herman-Edelstein M, Rozen-Zvi B, Zingerman B, Lichtenberg S, Malachi T, Gafter U, Ori Y. Effect of immunosuppressive drugs on DNA repair in human peripheral blood mononuclear cells. Biomed Pharmacother 2012;66:111-115.
  • 36
    Ori Y, Herman-Edelstein M, Zingerman B, Rozen-Zvi B, Gafter U, Malachi T, Gafter-Gvili A. Effect of immunosuppressive drugs on spontaneous DNA repair in human peripheral blood mononuclear cells. Biomed Pharmacother 2012;66:409-413.
  • 37
    O'Driscoll M, Jeggo PA. CsA can induce DNA double-strand breaks: Implications for BMT regimens particularly for individuals with defective DNA repair. Bone Marrow Transplant 2008;41:983-989.
  • 38
    Dickey JS, Redon CE, Nakamura AJ, Baird BJ, Sedelnikova OA, Bonner WM. H2AX: Functional roles and potential applications. Chromosoma 2009;118:683-692.
  • 39
    Davies C. Introduction to immunoassay principles. In: Wild DG, editor. The Immunoassay Handbook. Oxford: Elsevier Ltd; 2005. pp 3-37.
  • 40
    Mader RM, Steger GG, Moser K, Rainer H, Krenmayr P, Dittrich C. Instability of the anticancer agent etoposide under in vitro culture conditions. Cancer Chemother Pharmacol 1991;27:354-360.
  • 41
    Redon CE, Dickey JS, Bonner WM, Sedelnikova OA. gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res 2009;43:1171-1178.
  • 42
    Thoms KM, Kuschal C, Oetjen E, Mori T, Kobayashi N, Laspe P, Boeckmann L, Schön MP, Emmert S. Cyclosporin A, but not everolimus, inhibits DNA repair mediated by calcineurin: Implications for tumorigenesis under immunosuppression. Exp Dermatol 2011;20:232-236.
  • 43
    Guo F, Li J, Du W, Zhang S, O'Connor M, Thomas G, Kozma S, Zingarelli B, Pang Q, Zheng Y. mTOR regulates DNA damage response through NF-kappaB-mediated FANCD2 pathway in hematopoietic cells. Leukemia 2013. Mar 29. doi: 10.1038/leu.2013.93. [Epub ahead of print].
  • 44
    Bandhakavi S, Kim YM, Ro SH, Xie H, Onsongo G, Jun CB, Kim DH, Griffin TJ. Quantitative nuclear proteomics identifies mTOR regulation of DNA damage response. Mol Cell Proteomics 2010;9:403-414.