SEARCH

SEARCH BY CITATION

Literature Cited

  • 1
    Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 1992;111:229233.
  • 2
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science 1994;263:802805.
  • 3
    Wolkowicz R, Nolan GP, Curran MA. Lentiviral vectors for the delivery of DNA into mammalian cells. Methods Mol Biol 2004;246:391411.
  • 4
    Markowitz D, Hesdorffer C, Ward M, Goff S, Bank A. Retroviral gene transfer using safe and efficient packaging cell lines. Ann N Y Acad Sci 1990;612:407414.
  • 5
    Grignani F, Kinsella T, Mencarelli A, Valtieri M, Riganelli D, Grignani F, Lanfrancone L, Peschle C, Nolan GP, Pelicci PG. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res. 1998;58:1419.
  • 6
    Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996;272:263267.
  • 7
    Wu Y, Tapia PH, Fisher GW, Simons PC, Strouse JJ, Foutz T, Waggoner AS, Jarvik J, Sklar LA. Discovery of regulators of receptor internalization with high-throughput flow cytometry. Mol Pharmacol 2012;82:645657.
  • 8
    Heim R, Cubitt AB, Tsien RY. Improved green fluorescence. Nature 1995;373:663664.
  • 9
    Fiering SN, Roederer M, Nolan GP, Micklem DR, Parks DR, Herzenberg LA. Improved FACS-Gal: Flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs. Cytometry 1991;12:291301.
  • 10
    Schulz KR, Danna EA, Krutzik PO, Nolan GP. Single-cell phospho-protein analysis by flow cytometry. Curr Protoc Immunol 2007;Chapter 8:Unit 8.17.
  • 11
    Piatkevich KD, Malashkevich VN, Almo SC, Verkhusha VV. Engineering ESPT pathways based on structural analysis of LSSmKate red fluorescent proteins with large stokes shift. J Am Chem Soc 2010;132:1076210770.
  • 12
    Piatkevich KD, Hulit J, Subach OM, Wu B, Abdulla A, Segall JE, Verkhusha VV. Monomeric red fluorescent proteins with a large Stokes shift. Proc Natl Acad Sci 2010;107:5369-5374. Available at: http://www.pnas.org/content/early/2010/03/02/0914365107. Accessed May 14, 2013.
  • 13
    Tsien RY. Nobel lecture: Constructing and exploiting the fluorescent protein paintbox. Integr Biol 2010;2:7793.
  • 14
    Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 2004;22:15671572.
  • 15
    Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 2008;5:545551.
  • 16
    Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 2006;24:461465.
  • 17
    Subach FV, Subach OM, Gundorov IS, Morozova KS, Piatkevich KD, Cuervo AM, Verkhusha VV. Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nat Chem Biol 2009;5:118126.
  • 18
    Buranda T, Wu Y, Sklar LA. Quantum dots for quantitative flow cytometry. Methods Mol Biol 2011;699:6784.
  • 19
    Grant GD, Gamsby J, Martyanov V, Brooks L III, George LK, Mahoney JM, Loros JJ, Dunlap JC, Whitfield ML. Live-cell monitoring of periodic gene expression in synchronous human cells identifies Forkhead genes involved in cell cycle control. Mol Biol Cell 2012;23:30793093.
  • 20
    Krutzik PO, Nolan GP. Intracellular phospho-protein staining techniques for flow cytometry: Monitoring single cell signaling events. Cytometry A 2003;55A:6170.
  • 21
    Lu R, Neff NF, Quake SR, Weissman IL. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat Biotechnol 2011;29:928933.
  • 22
    Krutzik PO, Nolan GP. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 2006;3:361368.
  • 23
    Edwards BS, Ivnitski-Steele I, Young SM, Salas VM, Sklar LA. High-throughput cytotoxicity screening by propidium iodide staining. Curr Protoc Cytom 2007;Chapter 9:Unit9.24.
  • 24
    Violin JD, Zhang J, Tsien RY, Newton AC. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol 2003;161:899909.
  • 25
    Ashcroft RG, Lopez PA. Commercial high speed machines open new opportunities in high throughput flow cytometry (HTFC). J Immunol Methods 2000;243:1324.
  • 26
    Durick K, Negulescu P. Cellular biosensors for drug discovery. Biosens Bioelectron 2001;16:587592.
  • 27
    Edwards BS, Young SM, Saunders MJ, Bologa C, Oprea TI, Ye RD, Prossnitz ER, Graves SW, Sklar LA. High-throughput flow cytometry for drug discovery. Expert Opin Drug Discov 2007;2:685696.
  • 28
    Sklar LA, Carter MB, Edwards BS. Flow cytometry for drug discovery, receptor pharmacology and high-throughput screening. Curr Opin Pharmacol 2007;7:527534.
  • 29
    Curpan RF, Simons PC, Zhai D, Young SM, Carter MB, Bologa CG, Oprea TI, Satterthwait AC, Reed JC, Edwards BS, et al. High-throughput screen for the chemical inhibitors of antiapoptotic bcl-2 family proteins by multiplex flow cytometry. Assay Drug Dev Technol 2011;9:465474.
  • 30
    Perez OD, Nolan GP. Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat Biotechnol 2002;20:155162.
  • 31
    Edwards BS, Oprea T, Prossnitz ER, Sklar LA. Flow cytometry for high-throughput, high-content screening. Curr Opin Chem Biol 2004;8:392398.
  • 32
    Vignali DA. Multiplexed particle-based flow cytometric assays. J Immunol Methods 2000;243:243255.
  • 33
    Krutzik PO, Clutter MR, Trejo A, Nolan GP. Fluorescent cell barcoding for multiplex flow cytometry. Curr Protoc Cytom 2011;Chapter:Unit6.31.
  • 34
    Piyasena ME, Austin Suthanthiraraj PP, Applegate RW Jr, Goumas AM, Woods TA, López GP, Graves SW. Multinode acoustic focusing for parallel flow cytometry. Anal Chem 2012;84:18311839.
  • 35
    Goddard G, Martin JC, Graves SW, Kaduchak G. Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer. Cytometry A 2006;69A:6674.
  • 36
    Edwards BS, Sklar LA. Plug flow cytometry. Curr Protoc Cytom 2001;Chapter 1:Unit1.17.
  • 37
    Edwards BS, Young SM, Ivnitsky-Steele I, Ye RD, Prossnitz ER, Sklar LA. High-content screening: Flow cytometry analysis. Methods Mol Biol 2009;486:151165.
  • 38
    Haynes MK, Strouse JJ, Waller A, Leitao A, Curpan RF, Bologa C, Oprea TI, Prossnitz ER, Edwards BS, Sklar LA, et al. Detection of intracellular granularity induction in prostate cancer cell lines by small molecules using the HyperCyt high-throughput flow cytometry system. J Biomol Screen 2009;14:596609.
  • 39
    Bourton EC, Plowman PN, Zahir SA, Senguloglu GU, Serrai H, Bottley G, Parris CN. Multispectral imaging flow cytometry reveals distinct frequencies of γ-H2AX foci induction in DNA double strand break repair defective human cell lines. Cytometry A 2012;81A:130137.
  • 40
    Phanse Y, Ramer-Tait AE, Friend SL, Carrillo-Conde B, Lueth P, Oster CJ, Phillips GJ, Narasimhan B, Wannemuehler MJ, Bellaire BH. Analyzing cellular internalization of nanoparticles and bacteria by multi-spectral imaging flow cytometry. J Vis Exp 2012:e3884.
  • 41
    Zuba-Surma EK, Kucia M, Abdel-Latif A, Lillard JW Jr, Ratajczak MZ. The ImageStream System: A key step to a new era in imaging. Folia Histochem Cytobiol 2007;45:279290.
  • 42
    Bendall SC, Simonds EF, Qiu P, Amir ED, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011;332:687696.
  • 43
    Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 2012;36:142152.
  • 44
    Bradford JA, Buller G, Suter M, Ignatius M, Beechem JM. Fluorescence-intensity multiplexing: Simultaneous seven-marker, two-color immunophenotyping using flow cytometry. Cytometry A 2004;61A:142152.
  • 45
    Beske OE, Goldbard S. High-throughput cell analysis using multiplexed array technologies. Drug Discov Today 2002;7:S131S135.
  • 46
    Surviladze Z, Young SM, Sklar LA. High-throughput flow cytometry bead-based multiplex assay for identification of Rho GTPase inhibitors. Methods Mol Biol 2012;827:253270.
  • 47
    Chen J, Young SM, Allen C, Seeber A, Péli-Gulli M-P, Panchaud N, Waller A, Ursu O, Yao T, Golden JE, et al. Identification of a small molecule yeast TORC1 inhibitor with a multiplex screen based on flow cytometry. ACS Chem Biol 2012;7:715722.
  • 48
    Quinonez R, Sutton RE. Lentiviral vectors for gene delivery into cells. DNA Cell Biol 2002;21:937951.
  • 49
    Woods NB, Mikkola H, Nilsson E, Olsson K, Trono D, Karlsson S. Lentiviral-mediated gene transfer into haematopoietic stem cells. J Intern Med 2001;249:339343.
  • 50
    Blömer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997;71:66416649.
  • 51
    Nguyen TH, Oberholzer J, Birraux J, Majno P, Morel P, Trono D. Highly efficient lentiviral vector-mediated transduction of nondividing, fully reimplantable primary hepatocytes. Mol Ther J Am Soc Gene Ther 2002;6:199209.
  • 52
    Engelman A, Mizuuchi K, Craigie R. HIV-1 DNA integration: Mechanism of viral DNA cleavage and DNA strand transfer. Cell 1991;67:12111221.
  • 53
    Tiemann U, Sgodda M, Warlich E, Ballmaier M, Schöler HR, Schambach A, Cantz T. Optimal reprogramming factor stoichiometry increases colony numbers and affects molecular characteristics of murine induced pluripotent stem cells. Cytometry A 2011;79A:426435.
  • 54
    Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 2007;450:5662.
  • 55
    Stolp ZD, Stotland A, Diaz S, Hilton BJ, Burford W, Wolkowicz R. A novel two-tag system for monitoring transport and cleavage through the classical secretory pathway—Adaptation to HIV envelope processing. PLoS One 2013;8:e68835.
  • 56
    Hilton BJ, Wolkowicz R. An assay to monitor HIV-1 protease activity for the identification of novel inhibitors in T-cells. PLoS One 2010;5:e10940.
  • 57
    Gubin AN, Reddy B, Njoroge JM, Miller JL. Long-term, stable expression of green fluorescent protein in mammalian cells. Biochem Biophys Res Commun 1997;236:347350.
  • 58
    Condreay JP, Witherspoon SM, Clay WC, Kost TA. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci 1999;96:127132.
  • 59
    Levy JP, Muldoon RR, Zolotukhin S, Link CJ. Retroviral transfer and expression of a humanized, red-shifted green fluorescent protein gene into human tumor cells. Nat Biotechnol 1996;14:610614.
  • 60
    Limón A, Briones J, Puig T, Carmona M, Fornas O, Cancelas JA, Nadal M, García J, Rueda F, Barquinero J. High-titer retroviral vectors containing the enhanced green fluorescent protein gene for efficient expression in hematopoietic cells. Blood 1997;90:33163321.
  • 61
    Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat Methods 2005;2:905909.