Literature Cited

  • 1
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW. WHO Classification of Tumours of Haemaopoietic and Lymphoid Tissues, 4th ed. Lyon: World Health Organization; 2008. p 439.
  • 2
    Mann RB, Berard CW. Criteria for the cytologic subclassification of follicular lymphomas: A proposed alternative method. Hematol Oncol 1983;1:187192.
  • 3
    Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization classification of tumours: Pathology and genetics of tumours of haematopoietic and lymphoid tissues. Ann Oncol 2001;3:490491.
  • 4
    Metter GE, Nathwani BN, Burke JS, Winberg CD, Mann RB, Barcos M, Kjeldsberg CR, Whitcomb CC, Dixon DO, Miller TP. Morphological sub-classification of follicular lymphoma: Variability of diagnoses among hematopathologists, a collaborative study between the repository center and pathology panel for lymphoma clinical studies. J Clin Oncol 1985;3:2538.
  • 5
    Dick F, VanLier S, Banks P, Frizzera G, Witrak G, Gibson R, Everett G, Schuman L, Isacson P, O'Conor G, et al. Use of the working formulation for non-Hodgkin's lymphoma in epidemiological studies: Agreement between reported diagnoses and a panel of experienced pathologists. J Natl Cancer Inst 1987;78:11371144.
  • 6
    Fenton JJ, Taplin SH, Carney PA, Abraham L, Sickles EA, D' Orsi C, Berns EA, Cutter G, Hendrick RE, Barlow WE, et al. Influence of computer-aided detection on performance of screening mammography. New Engl J Med 2007;356:13991409.
  • 7
    Wu N, Gamsu G, Czum J, Held B, Thakur R, Nicola G. Detection of small pulmonary nodules using direct digital radiography and picture archiving and communication systems. J Thorac Imaging 2006;21:2731.
  • 8
    Gurcan MN, Sahiner B, Petrick N, Chan HP, Kazerooni EA, Cascade PN, Hadjiiski LM. Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system. Med Phys 2002;29:25522558.
  • 9
    Gurcan MN, Pan T, Sharma A, Kurc T, Oster S, Langella S, Hastings S, Siddiqui K, Siegel EL, Saltz J. GridIMAGE: A novel use of grid computing to support interactive human and computer-assisted detection decision support. J Digit Imaging 2007;20:160171.
  • 10
    Patterson E, Rayo M, Gill C, Gurcan MN. Barriers and facilitators to adoption of soft copy interpretation from the user perspective: Lessons learned from filmless radiology for slideless pathology. J Pathol Inform 2011;2:160171.
  • 11
    Tabeshet A, Teverovskiy M, Pang HY, Kumar VP, Verbel D, Kotsianti A, Saidi O. Multifeature prostate cancer diagnosis and gleason grading of histological images. IEEE Trans Med Imaging 2007;26:13661377.
  • 12
    Kong J, Sertel O, Shimada H, Boyer KL, Saltz JH, Gurcan MN. Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation. Pattern Recognit 2009;42:10801092.
  • 13
    Sertel O, Kong J, Catalyurek UV, Saltz JH, Gurcan MN. Computer-aided prognosis of neuroblastoma on whole-slide images: Classification of stromal development. Pattern Recognit 2009;42:10931103.
  • 14
    Fatakdawala H, Xu J, Basavanhally A, Bhanot G, Ganesan S, Feldman M, Tomaszewski JE, Madabhushi A. Expectation-maximization-driven geodesic active contour with overlap resolution: Application to lymphocyte segmentation on breast cancer histology. IEEE Trans Biomed Eng 2010;57:16761689.
  • 15
    Gurcan MN, Boucheron L, Can A, Madabhushi A, Rajpoot N, Yener B. Histopathological Image Analysis: A review. IEEE Rev Biomed Eng 2009;2:147171.
  • 16
    Sertel O, Kong J, Catalyurek UV, Lozanski G, Saltz J, Gurcan MN. Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading. J Signal Process Syst 2009;55:169183.
  • 17
    Cooper L, Sertel O, Kong J, Lozanski G, Huang K, Gurcan MN. Feature-based registration of histopathology images with different stains: An application for computerized follicular lymphoma prognosis. Comput Methods Programs Biomed 2009;96:182192.
  • 18
    Sertel O, Kong J, Lozanski G, Catalyurek UV, Saltz J, Joel H, Gurcan MN. Computerized microscopic image analysis of follicular lymphoma. Proc SPIE Med Imaging 2008;6915:691535.
  • 19
    Samsi SS, Krishnamurthy AK, Groseclose M, Caprioli RM, Lozanski G, Gurcan MN. Imaging mass spectrometry analysis for follicular lymphoma grading. Proc IEEE Eng Med Biol Soc 2009;2009:69696972.
  • 20
    Belkacem-Boussaid K, Sertel O, Lozanski G, Ahana'aah A, Gurcan MN. Extraction of color features in the spectral domain to recognize centroblasts in histopathology. Proc IEEE Eng Med Biol Soc 2009;2009:36853688.
  • 21
    Sertel O, Lozanski G, Shana'ah A, Gurcan MN. Computer-aided detection of centroblasts for follicular lymphoma grading using adaptive likelihood-based cell segmentation. IEEE Trans Biomed Eng 2010;57:26132616.
  • 22
    Oztan B, Kong H, Gurcan MN, Yener B. Follicular lymphoma grading using cell-graphs and multi-scale feature analysis. Proc SPIE Med Imaging 2012;8315:831516.
  • 23
    Samsi S, Lozanski G, Shana'ah A, Krishanmurthy A, Gurcan MN. Detection of follicles from IHC-stained slides of follicular lymphoma using iterative watershed. IEEE Trans Biomed Eng 2010;57:26092612.
  • 24
    Belkacem-Boussaid K, Pennell M, Lozanski G, Shana'ah A, Gurcan MN. Computer-aided classification of centroblast cells in follicular lymphoma. Anal Quant Cytol Histol 2010;32:254260.
  • 25
    Parker A, Bain B, Gatter S, Jack A, Matutes E, Rooney N, Ross F, Wilkins B, Wotherspoon A, Ramsay A. Best Practice in Lymphoma Diagnosis and Reporting. London: British Committee for Standards in Haematology, Royal College of Pathologists; 2012. pp 154.
  • 26
    Elden L. Matrix Methods in Data Mining and Pattern Recognition, Fundamentals of Algorithms. Philadelphia: Society for Industrial and Applied Mathematics; 2007. pp 224.
  • 27
    Seung HS, Lee DD. Manifold ways of perception. Science 2000;290:22682269.
  • 28
    Sundaresan A, Chellappa R. Model-driven segmentation of articulating humans in laplacian eigenspace. IEEE Trans Pattern Anal Mach Intell 2008;30:17711785.
  • 29
    Niazi MKK, Ibrahim MT, Nilsson, MF, Sköld, AC, Guan L, Nyström I. Robust signal generation and analysis of rat embryonic heart rate in vitro using laplacian eigenmaps and empirical mode decomposition. Comput Anal Images Patterns Lecture Notes Comput Sci 2011;6855:523530.
  • 30
    Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. NIPS 2001;14:585591.
  • 31
    Roshni VS, Revanthy K. Using mutual information and cross correlation as metrics for registration of images. J Theor Appl Inform Technol 2008;4:474481.
  • 32
    Inaba M, Imai H, Katoh N. Experimental results of a randomized clustering algorithm. In: Proceedings of the 12th Annual ACM Symposium on Computational Geometry. 1996. pp 401402.
  • 33
    Inaba M, Katoh N, Imai H. Applications of weighted Voronoi diagrams and randomization to variance-based-clustering. In: Proceedings of 10th Annual ACM Symposium on Computational Geometry. 1994. pp 332339.
  • 34
    Kanungo T, Mount D, Netanyahu N, Piatko P. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans Pattern Anal Mach Intell 2002;24:881892.
  • 35
    Ergüt, E, Yardimci Y, Mumcuoglu E, Konu O. Analysis of microarray images using FCM and K-means clustering algorithm. Proceedings of the International Conference on Signal Processing. Turkey; 2003. pp 116121.
  • 36
    Fu WJ. Penalized regressions: The bridge versus the lasso. J Comput Graph Stat 1998;7:397416.
  • 37
    Arlot S, Celisse A. A survey of cross-validation procedures for model selection. In: Yang Y, editor. Statistics Survey, Vol. 4. Alexandria, VA: American Statistical Association; 2010. pp 4079.
  • 38
    Gurcan MN, Sahiner B, Chan H-P, Hadjiiski LM, Petrick N. Selection of an optimal neural network architecture for computer-aided detection of microcalcifications—Comparison of automated optimization techniques. Med Phys 2001;28:19371948.
  • 39
    Weind KL, Maier CF, Rutt BK, Moussa M. Invasive carcinomas and fibroadenomas of the breast: Comparison of microvessel distributions–implications for imaging modalities. Radiology 1998;208:4774783.
  • 40
    Bartels PH, Thompson D, Bibbo M, Weber JE. Bayesian belief networks in quantitative histopathology. Anal Quant Cytol Histol 1992;14:459473.
  • 41
    Hamilton PW, Anderson N, Bartels PH, Thompson D. Expert system support using Bayesian belief networks in the diagnosis of fine needle aspiration biopsy specimens of the breast. J Clin Pathol London 1994;47:329336.
  • 42
    Gonzalez RC, Wintz P. Digital Image Processing, 2nd ed. Reading: Addison-Wesley; 1987. pp 954.
  • 43
    Rangayyan RM. Biomedical Image Analysis. Boca Raton: CRC Press; 2005.
  • 44
    Tuceryan M, Jain A. Texture analysis. In: Chen CH, Pau LF, Wang PSP, editors. The Handbook of Pattern Recognition and Computer Vision, 2nd ed. Singapore: World Scientific Publishing Co.; 1998. pp 207248.
  • 45
    Haralick RM. Statistical and structural approaches to texture. Proc IEEE 1979;67:786-804.
  • 46
    Cosatto E, Miller M, Graf HP, Meyer JS. Grading nuclear pleomorphism on histological micrographs. Proceedings ICPR 2008;7:14.
  • 47
    Chu J, Moon I, Mun M. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand. IEEE Trans Biomed Eng 2006;53:22322239.
  • 48
    D' Agostino M, Dardanoni V. What's so special about Euclidean distance? A characterization with applications to mobility and spatial voting. Soc Choice Welf 2009;33:211233.