SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Kern W, Haferlach T, Schoch C, Loffler H, Gassmann W, Heinecke A, et al. Early blast clearance by remission induction therapy is a major independent prognostic factor for both achievement of complete remission and long-term outcome in acute myeloid leukemia: data from the German AML Cooperative Group (AMLCG) 1992 Trial. Blood 2003; 101: 6470.
  • 2
    Buchner T, Hiddemann W, Berdel W, Wormann B, Schoch C, Loffler H, et al. Acute myeloid leukemia: treatment over 60. Rev Clin Exp Hematol 2002; 6: 4659.
  • 3
    Berman E. Recent advances in the treatment of acute leukemia: 1999. Curr Opin Hematol 2000; 7: 205211.
  • 4
    Nakano Y, Kiyoi H, Miyawaki S, Asou N, Ohno R, Saito H, et al. Molecular evolution of acute myeloid leukaemia in relapse: unstable N-ras and FLT3 genes compared with p53 gene. Br J Haematol 1999; 104: 659664.
  • 5
    Campana D, Pui CH. Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood 1995; 85: 14161434.
  • 6
    Macedo A, Orfao A, Gonzalez M, Vidriales MB, Lopez-Berges MC, Martinez A, et al. Immunological detection of blast cell subpopulations in acute myeloblastic leukemia at diagnosis: implications for minimal residual disease studies. Leukemia 1995; 9: 993998.
  • 7
    Baer MR. Detection of minimal residual disease in acute myeloid leukemia. Curr Oncol Rep 2002; 4: 398402.
  • 8
    Campana D. Determination of minimal residual disease in leukaemia patients. Br J Haematol 2003; 121: 823838.
  • 9
    Macedo A, Orfao A, Gonzalez M, Vidriales MB, Lopez-Berges MC, Martinez A, et al. Immunological detection of blast cell subpopulations in acute myeloblastic leukemia at diagnosis: implications for minimal residual disease studies. Leukemia 1995; 9: 993998.
  • 10
    Munoz L, Lopez O, Martino R, Brunet S, Bellido M, Rubiol E, et al. Combined use of reverse transcriptase polymerase chain reaction and flow cytometry to study minimal residual disease in Philadelphia positive acute lymphoblastic leukemia. Haematologica 2000; 85: 704710.
  • 11
    Neale GA, Coustan-Smith E, Pan Q, Chen X, Gruhn B, Stow P, et al. Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 1999; 13: 12211226.
  • 12
    Sievers EL, Radich JP. Detection of minimal residual disease in acute leukemia. Curr Opin Hematol 2000; 7: 212216.
  • 13
    Wormann B, Safford M, Konemann S, Buchner T, Hiddemann W, Terstappen LW. Detection of aberrant antigen expression in acute myeloid leukemia by multiparameter flow cytometry. Recent Results Cancer Res 1993; 131: 185196.
  • 14
    Campana D, Coustan-Smith E. Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry 1999; 38: 139152.
  • 15
    Baer MR. Detection of minimal residual disease in acute myeloid leukemia. Curr Oncol Rep 2002; 4: 398402.
  • 16
    Kern W, Danhauser-Riedl S, Ratei R, Schnittger S, Schoch C, Kolb HJ, et al. Detection of minimal residual disease in unselected patients with acute myeloid leukemia using multiparameter flow cytometry to define leukemia-associated immunophenotypes and determine their frequencies in normal bone marrow. Haematologica 2003; 88: 646653.
  • 17
    San Miguel JF, Vidriales MB, Lopez-Berges C, Diaz-Mediavilla J, Gutierrez N, Canizo C, et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood 2001; 98: 17461751.
  • 18
    Ciudad J, San Miguel JF, Lopez-Berges MC, Vidriales B, Valverde B, Ocqueteau M, et al. Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol 1998; 16: 37743781.
  • 19
    Panzer-Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2000; 95: 790794.
  • 20
    Coustan-Smith E, Ribeiro RC, Rubnitz JE, Razzouk BI, Pui CH, Pounds S, et al. Clinical significance of residual disease during treatment in childhood acute myeloid leukaemia. Br J Haematol 2003; 123: 243252.
  • 21
    Schoch C, Kern W, Krawitz P, Dugas M, Schnittger S, Haferlach T, et al. Dependence of age-specific incidence of acute myeloid leukemia on karyotype. Blood 2001; 98: 3500.
  • 22
    Munoz L, Nomdedeu JF, Villamor N, Guardia R, Colomer D, Ribera JM, et al. Acute myeloid leukemia with MLL rearrangements: clinicobiological features, prognostic impact and value of flow cytometry in the detection of residual leukemic cells. Leukemia 2003; 17: 7682.
  • 23
    Schnittger S, Kinkelin U, Schoch C, Heinecke A, Haase D, Haferlach T, et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia 2000; 14: 796804.
  • 24
    Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 5966.
  • 25
    Campana D, Coustan-Smith E. The use of flow cytometry to detect minimal residual disease in acute leukemia. Eur J Histochem 1996; 40( suppl 1): 3942.
  • 26
    Macedo A, Orfao A, Gonzalez M, Vidriales MB, Lopez-Berges MC, Martinez A, et al. Immunological detection of blast cell subpopulations in acute myeloblastic leukemia at diagnosis: implications for minimal residual disease studies. Leukemia 1995; 9: 993998.
  • 27
    Baer MR, Stewart CC, Dodge RK, Leget G, Sule N, Mrozek K, et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 2001; 97: 35743580.
  • 28
    Drach J, Drach D, Glassl H, Gattringer C, Huber H. Flow cytometric determination of atypical antigen expression in acute leukemia for the study of minimal residual disease. Cytometry 1992; 13: 893901.
  • 29
    Macedo A, San Miguel JF, Vidriales MB, Lopez-Berges MC, Garcia-Marcos MA, Gonzalez M, et al. Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease. J Clin Pathol 1996; 49: 1518.
  • 30
    Thomas X, Campos L, Archimbaud E, Shi ZH, Treille-Ritouet D, Anglaret B, et al. Surface marker expression in acute myeloid leukaemia at first relapse. Br J Haematol 1992; 81: 4044.
  • 31
    Tomova A, Babusikova O. Shifts in expression of immunological cell markers in relapsed acute leukemia. Neoplasma 2001; 48: 164168.
  • 32
    Hur M, Chang YH, Lee DS, Park MH, Cho HI. Immunophenotypic and cytogenetic changes in acute leukaemia at relapse. Clin Lab Haematol 2001; 23: 173179.
  • 33
    Oelschlagel U, Nowak R, Schaub A, Koppel C, Herbst R, Mohr B, et al. Shift of aberrant antigen expression at relapse or at treatment failure in acute leukemia. Cytometry 2000; 42: 247253.
  • 34
    Vidriales MB, San Miguel JF, Orfao A, Coustan-Smith E, Campana D. Minimal residual disease monitoring by flow cytometry. Best Pract Res Clin Haematol 2003; 16: 599612.
  • 35
    Abshire TC, Buchanan GR, Jackson JF, Shuster JJ, Brock B, Head D, et al. Morphologic, immunologic and cytogenetic studies in children with acute lymphoblastic leukemia at diagnosis and relapse: a Pediatric Oncology Group study. Leukemia 1992; 6: 357362.
  • 36
    Czuczman MS, Dodge RK, Stewart CC, Frankel SR, Davey FR, Powell BL, et al. Value of immunophenotype in intensively treated adult acute lymphoblastic leukemia: cancer and leukemia Group B study 8364. Blood 1999; 93: 39313939.
  • 37
    Baer MR, Stewart CC, Dodge RK, Leget G, Sule N, Mrozek K, et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 2001; 97: 35743580.
  • 38
    Macedo A, San Miguel JF, Vidriales MB, Lopez-Berges MC, Garcia-Marcos MA, Gonzalez M, et al. Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease. J Clin Pathol 1996; 49: 1518.
  • 39
    Thomas X, Campos L, Archimbaud E, Shi ZH, Treille-Ritouet D, Anglaret B, et al. Surface marker expression in acute myeloid leukaemia at first relapse. Br J Haematol 1992; 81: 4044.
  • 40
    Hur M, Chang YH, Lee DS, Park MH, Cho HI. Immunophenotypic and cytogenetic changes in acute leukaemia at relapse. Clin Lab Haematol 2001; 23: 173179.
  • 41
    Oelschlagel U, Nowak R, Schaub A, Koppel C, Herbst R, Mohr B, et al. Shift of aberrant antigen expression at relapse or at treatment failure in acute leukemia. Cytometry 2000; 42: 247253.
  • 42
    Vidriales MB, San Miguel JF, Orfao A, Coustan-Smith E, Campana D. Minimal residual disease monitoring by flow cytometry. Best Pract Res Clin Haematol 2003; 16: 599612.
  • 43
    Campana D, Coustan-Smith E. Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry 1999; 38: 139152.
  • 44
    Macedo A, San Miguel JF, Vidriales MB, Lopez-Berges MC, Garcia-Marcos MA, Gonzalez M, et al. Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease. J Clin Pathol 1996; 49: 1518.
  • 45
    Kern W, Haferlach T, Schnittger S, Ludwig WD, Hiddemann W, Schoch C. Karyotype instability between diagnosis and relapse in 117 patients with acute myeloid leukemia: implications for resistance against therapy. Leukemia 2002; 16: 20842091.
  • 46
    Estey E, Keating MJ, Pierce S, Stass S. Change in karyotype between diagnosis and first relapse in acute myelogenous leukemia. Leukemia 1995; 9: 972976.
  • 47
    Garson OM, Hagemeijer A, Sakurai M, Reeves BR, Swansbury GJ, Williams GJ, et al. Cytogenetic studies of 103 patients with acute myelogenous leukemia in relapse. Cancer Genet Cytogenet 1989; 40: 187202.
  • 48
    Baer MR, Stewart CC, Dodge RK, Leget G, Sule N, Mrozek K, et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 2001; 97: 35743580.
  • 49
    Hur M, Chang YH, Lee DS, Park MH, Cho HI. Immunophenotypic and cytogenetic changes in acute leukaemia at relapse. Clin Lab Haematol 2001; 23: 173179.
  • 50
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976; 33: 451458.
  • 51
    Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization classification of tumours. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2001.
  • 52
    Kern W, Kohlmann A, Wuchter C, Schnittger S, Schoch C, Mergenthaler S, et al. Correlation of protein expression and gene expression in acute leukemia. Cytometry 2003; 55B: 2936.
  • 53
    Haferlach T, Schoch C, Loffler H, Gassmann W, Kern W, Schnittger S, et al. Morphologic dysplasia in de novo acute myeloid leukemia (AML) is related to unfavorable cytogenetics but has no independent prognostic relevance under the conditions of intensive induction therapy: results of a multiparameter analysis from the German AML Cooperative Group studies. J Clin Oncol 2003; 21: 256265.
  • 54
    Haferlach T, Winkemann M, Loffler H, Schoch R, Gassmann W, Fonatsch C, et al. The abnormal eosinophils are part of the leukemic cell population in acute myelomonocytic leukemia with abnormal eosinophils (AML M4Eo) and carry the pericentric inversion 16: a combination of May-Grunwald-Giemsa staining and fluorescence in situ hybridization. Blood 1996; 87: 24592463.
  • 55
    Loffler H, Kayser W, Schmitz N, Thiel E, Hoelzer D, Buchner T, et al. Morphological and cytochemical classification of adult acute leukemias in two multicenter studies in the Federal Republic of Germany. Hamatol Bluttransfus 1987; 30: 2127.
  • 56
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 620625.
  • 57
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO) [see comments]. Br J Haematol 1991; 78: 325329.
  • 58
    Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH, et al. Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 2003; 21: 46424649.
  • 59
    Schoch C, Schnittger S, Bursch S, Gerstner D, Hochhaus A, Berger U, et al. Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia 2002; 16: 5359.
  • 60
    Schoch C, Haferlach T, Bursch S, Gerstner D, Schnittger S, Dugas M, et al. Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH. Genes Chromosomes Cancer 2002; 35: 2029.
  • 61
    Schoch C, Haferlach T, Haase D, Fonatsch C, Loffler H, Schlegelberger B, et al. Patients with de novo acute myeloid leukaemia and complex karyotype aberrations show a poor prognosis despite intensive treatment: a study of 90 patients. Br J Haematol 2001; 112: 118126.
  • 62
    Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 5966.
  • 63
    Schnittger S, Boell I, Schoch C, Dugas M, Kern W, Sauerland MC, et al. FLT3D835/I836 point mutations in acute myeloid leukemia: correlation to cytogenetics, cytomorphology, and prognosis in 1229 patients. Blood 2002; 100: 329a.
  • 64
    Baer MR, Stewart CC, Dodge RK, Leget G, Sule N, Mrozek K, et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 2001; 97: 35743580.
  • 65
    Macedo A, San Miguel JF, Vidriales MB, Lopez-Berges MC, Garcia-Marcos MA, Gonzalez M, et al. Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease. J Clin Pathol 1996; 49: 1518.
  • 66
    Thomas X, Campos L, Archimbaud E, Shi ZH, Treille-Ritouet D, Anglaret B, et al. Surface marker expression in acute myeloid leukaemia at first relapse. Br J Haematol 1992; 81: 4044.
  • 67
    Hur M, Chang YH, Lee DS, Park MH, Cho HI. Immunophenotypic and cytogenetic changes in acute leukaemia at relapse. Clin Lab Haematol 2001; 23: 173179.
  • 68
    Oelschlagel U, Nowak R, Schaub A, Koppel C, Herbst R, Mohr B, et al. Shift of aberrant antigen expression at relapse or at treatment failure in acute leukemia. Cytometry 2000; 42: 247253.
  • 69
    Vidriales MB, San Miguel JF, Orfao A, Coustan-Smith E, Campana D. Minimal residual disease monitoring by flow cytometry. Best Pract Res Clin Haematol 2003; 16: 599612.
  • 70
    Borowitz MJ, Guenther KL, Shults KE, Stelzer GT. Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol 1993; 100: 534540.