Discrepancy in measuring CD4 expression on T-lymphocytes using fluorescein conjugates in comparison with unimolar CD4-phycoerythrin conjugates


  • This article is a US government work and, as such, is in the public domain in the United States of America.

  • This work does not represent an official position of the Food and Drug Administration.



Numerous methods for quantitative fluorescence calibration (QFC) have been developed to quantify receptor expression on lymphocytes. However, the results from the use of these different QFC methods vary considerably in the literature. To better identify the causes of these discrepancies, we measured CD4 expression using FITC and phycoerythrin (PE) conjugates to stain CYTO-TROL™ Control Cells and T-lymphocytes in whole blood and isolated cell preparations. We further examined pH of the cellular microenvironment as a cause of discordant results obtained with the FITC conjugate.


Calibration with Quantibrite PE-labeled microspheres and the use of unimolar CD4-PE conjugates provided direct measurement of the antibody bound per cell value (ABC) for CD4 expression on normal T-lymphocytes. Calibration for CD4-FITC monoclonal antibody (Mab) labeled CYTO-TROL Control Cells and normal T-lymphocytes was based on molecules of equivalent soluble fluorochrome (MESF) as determined by FITC-labeled microspheres traceable to NIST RM 8640. The MESF value for CD4-FITC Mab was determined that enabled the conversion of the MESF values obtained for CYTO-TROL cells to ABC. We investigated the likely pH change in the fluorescein microenvironments within FITC-labeled Mab and cells stained with FITC-labeled Mab using a pH sensitive indicator.


The mean ABC value for T-lymphocytes prepared from fresh whole blood using CD4-PE conjugate (48,321) was consistent with previous results, and it was much higher than the mean ABC using CD4-FITC Mab (22,156). The mean ABC value for CYTO-TROL cells using CD4-PE conjugate (43,090) was also higher than that using CD4-FITC conjugate (34,734), although the discrepancy was not as great. Further studies suggested the discrepancy in CYTO-TROL results may be accounted for by the low pH of the membrane microenvironment, but the greater discrepancy in T-lymphocytes could not be fully explained.


CD4 expression on fresh normal whole blood samples and CYTO-TROL cells can be consistently quantified in ABC units using Quantibrite PE quantification beads and unimolar CD4-PE conjugates. Quantification with CD4-FITC conjugate is not as consistent, but may be improved by the use of CD4 T-cells as biological calibrators. This approximation is valid only for surface receptors with consensus ABC values measured by different QFC methods serving as biological standards. Published 2007 Wiley-Liss, Inc.