SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Gottlieb MS,Schroff R,Schanker HM,Weisman JD,Fan PT,Wolf RA,Saxon A. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: Evidence of a new acquired cellular immunodeficiency. New Engl J Med 1981; 305: 14251431.
  • 2
    Fahey JL,Taylor JM,Detels R,Hofmann B,Melmed R,Nishanian P,Giorgi JV. The prognostic value of cellular and serologic markers in infection with human immunodeficiency virus type 1. N Engl J Med 1990; 322: 166172.
  • 3
    Mandy F,Nicholson J,Autran B,Janossy G. T-cell subset counting and the fight against AIDS: Reflections over a 20-year struggle. Cytometry 2002; 50: 3945.
  • 4
    Sharp PM,Bailes E,Chaudhuri RR,Rodenburg CM,Santiago MO,Hahn BH. The origins of acquired immune deficiency syndrome viruses: Where and when? Philos Trans R Soc Lond B Biol Sci 2001; 356: 867876.
  • 5
    Desowitz RS. The Malaria Capers. Tales of Parasites and People. New York: Norton; 1991. 288 p.
  • 6
    Ryan F. The Forgotten Plague: How the Battle Against Tuberculosis was Won—and Lost. Boston: Little, Brown and Company; 1993. xix + 460 pp.
  • 7
    Abu-Raddad LJ,Patnaik P,Kublin JG. Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. Science 2006; 314: 16031606. Erratum in:Science2007;315:598.
  • 8
    Laufer MK,Plowe CV. The interaction between HIV and malaria in Africa. Curr Infect Dis Rep 2007; 9: 4754.
  • 9
    Friedland G,Churchyard GJ,Nardell E. Tuberculosis and HIV coinfection: Current state of knowledge and research priorities. J Infect Dis 2007; 196( Suppl 1): S1S3.
  • 10
    Wells CD,Cegielski JP,Nelson LJ,Laserson KF,Holtz TH,Finlay A,Castro KG,Weyer K. HIV infection and multidrug-resistant tuberculosis: The perfect storm. J Infect Dis 2007; 196( Suppl 1): S86S107.
  • 11
    Shapiro HM. “Cellular astronomy”—A foreseeable future in cytometry. Cytometry Part A 2004; 60A: 115124.
  • 12
    Shapiro HM,Perlmutter NG. Personal cytometers—Slow flow or no flow? Cytometry Part A 2009; 69A: 620630.
  • 13
    De Kruif P. Microbe Hunters (1926; republished). San Diego: Harcourt Brace; 1996. 357 p.
  • 14
    McNeill WH. Plagues and Peoples. New York: Doubleday; 1976. 340 p.
  • 15
    Gardner MJ,Hall N,Fung E,White O,Berriman M,Hyman RW,Carlton JM,Pain A,Nelson KE,Bowman S,Paulsen IT,James K,Eisen JA,Rutherford K,Salzberg SL,Craig A,Kyes S,Chan MS,Nene V,Shallom SJ,Suh B,Peterson J,Angiuoli S,Pertea M,Allen J,Selengut J,Haft D,Mather MW,Vaidya AB,Martin DM,Fairlamb AH,Fraunholz MJ,Roos DS,Ralph SA,McFadden GI,Cummings LM,Subramanian GM,Mungall C,Venter JC,Carucci DJ,Hoffman SL,Newbold C,Davis RW,Fraser CM,Barrell B. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002; 419: 498511.
  • 16
    McCutchan TF,Dame JB,Miller LH,Barnwell J. Evolutionary relatedness of Plasmodium species as determined by the structure of DNA. Science 1984; 225: 808811.
  • 17
    Carlton JM,Galinski MR,Barnwell JW,Dame JB. Karyotype and synteny among the chromosomes of all four species of human malaria parasite. Mol Biochem Parasitol 1999; 101: 2332.
  • 18
    Hammarton TC,Mottram JC,Doerig C. The cell cycle of parasitic protozoa: Potential for chemotherapeutic exploitation. Prog Cell Cycle Res 2003; 5: 91101.
  • 19
    Cole ST,Brosch R,Parkhill J,Garnier T,Churcher C,Harris D,Gordon SV,Eiglmeier K,Gas S,Barry CEIII,Tekaia F,Badcock K,Basham D,Brown D,Chillingworth T,Connor R,Davies R,Devlin K,Feltwell T,Gentles S,Hamlin N,Holroyd S,Hornsby T,Jagels K,Krogh A,McLean J,Moule S,Murphy L,Oliver K,Osborne J,Quail MA,Rajandream MA,Rogers J,Rutter S,Seeger K,Skelton J,Squares R,Squares S,Sulston JE,Taylor K,Whitehead S,Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393: 537544.
  • 20
    World Health Organization. Global tuberculosis control—Surveillance, planning, financing. WHO Report 2007 (WHO/HTM/TB/2007.376). Available at http://www.who.int/tb/publications/global_report/en.
  • 21
    Zignol M,Hosseini MS,Wright A,Weezenbeek CL,Nunn P,Watt CJ,Williams BG,Dye C. Global incidence of multidrug-resistant tuberculosis. J Infect Dis 2006; 194: 479485.
  • 22
    Centers for Disease Control and Prevention (CDC). Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs worldwide, 2000–2004. MMWR Morb Mortal Wkly Rep 2006; 55: 301305.
  • 23
    Shah NS,Wright A,Bai GH,Barrera L,Boulahbal F,Martin-Casabona N,Drobniewski F,Gilpin C,Havelkova M,Lepe R,Lumb R,Metchock B,Portaels F,Rodrigues MF,Rusch-Gerdes S,Van Deun A,Vincent V,Laserson K,Wells C,Cegielski JP. Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis 2007; 13: 380387.
  • 24
    Parmet WE. Legal power and legal rights—Isolation and quarantine in the case of drug-resistant tuberculosis. N Engl J Med 2007; 357: 433435.
  • 25
    Hooke R. Micrographia. London: The Royal Society; 1665.Mineola, NY: Dover Publications;2003 (reprinted). 273 p.
  • 26
    Clark G,Kasten FH. History of Staining, 3rd ed. Baltimore: Williams & Wilkins; 1983. x + 304 p.
  • 27
    Garfield S. Mauve. New York: Norton; 2001. 222 p.
  • 28
    Stodola FH,Lesuk A,Anderson RJ. The chemistry of the lipids of tubercle bacilli. LIV. The isolation and properties of mycolic acid. J Biol Chem 1938; 126: 505513.
  • 29
    Asselineau J,Lederer E. Structure of the mycolic acids of mycobacteria. Nature 1950; 166: 782783.
  • 30
    Barry CEIII,Lee RE,Mdluli K,Sampson AE,Schroeder BG,Slayden RA,Yuan Y. Mycolic acids: Structure, biosynthesis and physiological functions. Prog Lipid Res 1998; 37: 143179.
  • 31
    Watanabe M,Aoyagi Y,Ridell M,Minnikin DE. Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology 2001; 147: 18251837.
  • 32
    Takayama K,Wang C,Besra GS. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 2005; 18: 81101.
  • 33
    Hagemann PKH. Fluoreszenzfärbung von Tuberkelbakterien mit Auramin. Münch Med Wschr 1938; 85: 10661068.
  • 34
    Steingart KR,Henry M,Ng V,Hopewell PC,Ramsay A,Cunningham J,Urbanczik R,Perkins M,Aziz MA,Pai M. Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic review. Lancet Infect Dis 2006; 6: 570581.
  • 35
    Anthony RM,Kolk AH,Kuijper S,Klatser PR. Light emitting diodes for auramine O fluorescence microscopic screening of Mycobacterium tuberculosis. Int J Tuberc Lung Dis 2006; 10: 10601062.
  • 36
    Hänscheid T,Ribeiro CM,Shapiro HM,Perlmutter NG. Fluorescence microscopy for tuberculosis diagnosis. Lancet Infect Dis 2007; 7: 236237.
  • 37
    Hung NV,Sy DN,Anthony RM,Cobelens FG,van Soolingen D. Fluorescence microscopy for tuberculosis diagnosis. Lancet Infect Dis 2007; 7: 238239.
  • 38
    Fleischer B. 100 years ago: Giemsa's solution for staining of plasmodia. Trop Med Int Health 2004; 9: 755756.
  • 39
    Ambroise-Thomas P,Michel-Brun J,Despeignes J. [Rapid identification of sanguicolous parasites by staining with acridine orange and fluorescence microscopy]. Bull Soc Pathol Exot Filiales 1965; 58: 639643.
  • 40
    Shute GT,Sodeman TM. Identification of malaria parasites by fluorescence microscopy and acridine orange staining. Bull World Health Organ 1973; 48: 591596.
  • 41
    Spielman A,Perrone JB,Teklehaimanot A,Balcha F,Wardlaw SC,Levine RA. Malaria diagnosis by direct observation of centrifuged samples of blood. Am J Trop Med Hyg 1988; 39: 337342.
  • 42
    Makler MT,Ries LK,Ries J,Horton RJ,Hinrichs DJ. Detection of Plasmodium falciparum infection with the fluorescent dye, benzothiocarboxypurine. Am J Trop Med Hyg 1991; 44: 1116.
  • 43
    Malinin GI,Malinin TI. Rapid microscopic detection of malaria parasites permanently fluorochrome stained in blood smears with aluminum and morin. Am J Clin Pathol 1991; 95: 424427.
  • 44
    Caramello P,Lucchini A,Savoia D,Gioannini P. Rapid diagnosis of malaria by use of fluorescent probes. Diagn Microbiol Infect Dis 1993; 17: 293297.
  • 45
    Ochola LB,Vounatsou P,Smith T,Mabaso ML,Newton CR. The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard. Lancet Infect Dis. 2006; 6: 582588.
  • 46
    “Student” [ Gosset WS]. On the error of counting with a haemacytometer. Biometrika 1907; 5: 351360.
  • 47
    Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev 2002; 15: 6678.
  • 48
    Hänscheid T. Diagnosis of malaria: A review of alternatives to conventional microscopy. Clin Lab Haematol 1999; 21: 235245.
  • 49
    O'Meara WP,McKenzie FE,Magill AJ,Forney JR,Permpanich B,Lucas C,Gasser RAJr,Wongsrichanalai C. Sources of variability in determining malaria parasite density by microscopy. Am J Trop Med Hyg 2005; 73: 593598.
  • 50
    O'Meara WP,Hall BF,McKenzie FE. Malaria vaccine efficacy: The difficulty of detecting and diagnosing malaria. Malaria J 2007; 6: 36.
  • 51
    Wittekind DH. On the nature of Romanowsky-Giemsa staining and its significance for cytochemistry and histochemistry: An overall view. Histochem J 1983; 15: 10291047.
  • 52
    Zipfel E,Grezes JR,Naujok A,Seiffert W,Wittekind DH,Zimmermann HW. [Romanowsky dyes and the Romanowsky-Giemsa effect. 3. Microspectrophotometric studies of Romanowsky-Giemsa staining. Spectroscopic evidence of a DNA-azure B-eosin Y complex producing the Romanowsky-Giemsa effect.] Histochemistry 1984; 81: 337351 (in German).
  • 53
    Horobin RW,Walter KJ. Understanding Romanowsky staining. I. The Romanowsky-Giemsa effect in blood smears. Histochemistry 1987; 86: 331336.
  • 54
    Shapiro HM,Mandy F. Cytometry in malaria: Moving beyond Giemsa. Cytometry Part A 2007; 71A: 643645.
  • 55
    Jackson PR,Winkler DG,Kimzey SL,Fisher FM. Cytofluorograf detection of Plasmodium yoelii, Trypanosoma gambiense, and Trypanosoma equiperdum by laser excited fluorescence of stained rodent blood. J Parasitol 1977; 63: 593598.
  • 56
    Howard RJ,Battye FL,Mitchell GF. Plasmodium-infected blood cells analyzed and sorted by flow fluorimetry with the deoxyribonucleic acid binding dye 33258 Hoechst. J Histochem Cytochem 1979; 27: 803813.
  • 57
    Xie L,Li Q,Johnson J,Zhang J,Milhous W,Kyle D. Development and validation of flow cytometric measurement for parasitaemia using autofluorescence and YOYO-1 in rodent malaria. Parasitology 2007; 134: 11511162.
  • 58
    Bhakdi SC,Sratongno P,Chimma P,Rungruang T,Chuncharunee A,Neumann HP,Malasit P,Pattanapanyasat K. Re-evaluating acridine orange for rapid flow cytometric enumeration of parasitemia in malaria-infected rodents. Cytometry Part A 2007; 71A: 662667.
  • 59
    Hare JD,Bahler DW. Analysis of Plasmodium falciparum growth in culture using acridine orange and flow cytometry. J Histochem Cytochem 1986; 34: 215220.
  • 60
    Hare JD. Two-color flow-cytometric analysis of the growth cycle of Plasmodium falciparum in vitro: Identification of cell cycle compartments. J Histochem Cytochem 1986; 34: 16511658.
  • 61
    Hänscheid T,Egan TJ,Grobusch MP. Haemozoin: From melatonin pigment to drug target, diagnostic tool, and immune modulator. Lancet Infect Dis 2007; 7: 675685.
  • 62
    Mendelow BV,Lyons C,Nhlangothi P,Tana M,Munster M,Wypkema E,Liebowitz L,Marshall L,Scott S,Coetzer TL. Automated malaria detection by depolarization of laser light. Br J Haematol 1999; 104: 499503.
  • 63
    Krämer B,Grobusch MP,Suttorp N,Neukammer J,Rinneberg H. Relative frequency of malaria pigment-carrying monocytes of nonimmune and semi-immune patients from flow cytometric depolarized side scatter. Cytometry 2001; 45: 133140.
  • 64
    Grobusch MP,Hänscheid T,Krämer B,Neukammer J,May J,Seybold J,Kun JF,Suttorp N. Sensitivity of hemozoin detection by automated flow cytometry in non- and semi-immune malaria patients. Cytometry Part B Clin Cytom 2003; 55B: 4651.
  • 65
    Steingart KR,Ng V,Henry M,Hopewell PC,Ramsay A,Cunningham J,Urbanczik R,Perkins MD,Aziz MA,Pai M. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: A systematic review. Lancet Infect Dis 2006; 6: 664674.
  • 66
    MurrayPR, BaronEJ, JorgensenJH, LandryML, PfallerMA, editors. Manual of Clinical Microbiology, 9th ed. Washington: ASM Press; 2007. 2488 p.
  • 67
    Richards OW. The staining of acid-fast tubercle bacteria. Science 1941; 93: 190.
  • 68
    Oster G. Fluorescence of auramine O in the presence of nucleic acid. C R Hebd Seances Acad Sci 1951; 232: 17081710 (in French).
  • 69
    Kojima K,Niri M,Setoguchi K,Tsuda I,Tatsumi N. An automated optoelectronic reticulocyte counter. Am J Clin Pathol 1989; 92: 5761.
  • 70
    Ibrahim P,Whiteley AS,Barer MR. SYTO 16 labelling and flow cytometry of Mycobacterium avium. Lett Appl Microbiol 1997; 25: 437441.
  • 71
    Pina-Vaz C,Costa-de-Oliveira S,Rodrigues AG. Safe susceptibility testing of Mycobacterium tuberculosis by flow cytometry with the fluorescent nucleic acid stain SYTO 16. J Med Microbiol 2005; 54: 7781.
  • 72
    Pina-Vaz C,Sofia Costa-Oliveira S,Goncalves Rodrigues A,Salvador A. Novel method using a laser scanning cytometer for detection of mycobacteria in clinical samples. J Clin Microbiol 2004; 42: 906908.
  • 73
    Goren MB,Cernich M,Brokl O. Some observations of mycobacterial acid-fastness. Am Rev Respir Dis 1978; 118: 151154.
  • 74
    Draper P. The outer parts of the mycobacterial envelope as permeability barriers. Front Biosci 1998; 3: D1253D1261.
  • 75
    Schlacks M,Coppernoll S,DeBoo A,Schmidt A,Bartnicki L,Schreckenberger P,Lipton S. Evaluation of four commercially available auramine O stain sets. Presented at the American Society for Microbiology General Meeting, Orlando, FL, May 2006. Poster C-324.
  • 76
    Veropoulos K,Learmonth G,Campbell C,Knight B,Simpson J. Automated identification of tubercle bacilli in sputum. A preliminary investigation. Anal Quant Cytol Histol 1999; 21: 277282.
  • 77
    Forero MG,Cristóbal G,Desco M. Automatic identificationof Mycobacterium tuberculosis by Gaussian mixture models. J Microsc 2006; 223(Part 2): 120132.
  • 78
    Getahun H,Harrington M,O'Brien R,Nunn P. Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: Informing urgent policy changes. Lancet 2007; 369: 20422049.
  • 79
    Colebunders R,Bastian A. A review of the diagnosis and treatment of smear-negative pulmonary tuberculosis. Int J Tuberc Lung Dis 2000; 4: 97107.
  • 80
    Rouillon A,Perdrizet S,Parrot R. Transmission of tubercle bacilli: The effects of chemotherapy. Tubercle 1976; 57: 275299.
  • 81
    FriedenT, editor. Toman's Tuberculosis. Case Detection, Treatment, and Monitoring—Questions and Answers,2nd ed. Geneva: World Health Organization; 2004. pp 1121. Available at http://www.who.int/tb/publications/toman/en/index.html (online free).
  • 82
    Hobby GL,Holman AP,Iseman MD,Jones JM. Enumeration of tubercle bacilli in sputum of patients with pulmonary tuberculosis. Antimicrob Agents Chemother 1973; 4: 94104.
  • 83
    Chakravorty S,Tyagi JS. Novel multipurpose methodology for detection of mycobacteria in pulmonary and extrapulmonary specimens by smear microscopy, culture, and PCR. J Clin Microbiol 2005; 43: 26972702.
  • 84
    Haldar S,Chakravorty S,Bhalla M,De Majumdar S,Tyagi JS. Simplified detection of Mycobacterium tuberculosis in sputum using smear microscopy and PCR with molecular beacons. J Med Microbiol 2007; 56: 13561362.
  • 85
    Ozanne V,Ortalo-Magne A,Vercellone A,Fournie JJ,Daffe M. Cytometric detection of mycobacterial surface antigens: Exposure of mannosyl epitopes and of the arabinan segment of arabinomannans. J Bacteriol 1996; 178: 72547259.
  • 86
    Nader WF,Nebe CT,Nebe G,Dastani A,Birr C. Analysis of bacteria in environmental and medical microbiology by flow cytometry. In: VeheriA, TiltonRC, BalowsA, editors. Rapid Methods and Automation in Microbiology and Immunology. Berlin: Springer; 1991. pp 131140.
  • 87
    Stender H,Mollerup TA,Lund K,Petersen KH,Hongmanee P,Godtfredsen SE. Direct detection and identification of Mycobacterium tuberculosis in smear-positive sputum samples by fluorescence in situ hybridization (FISH) using peptide nucleic acid (PNA) probes. Int J Tuberc Lung Dis 1999; 3: 830837.
  • 88
    Stender H,Lund K,Petersen KH,Rasmussen OF,Hongmanee P,Miorner H,Godtfredsen SE. Fluorescence in situ hybridization assay using peptide nucleic acid probes for differentiation between tuberculous and nontuberculous mycobacterium species in smears of mycobacterium cultures. J Clin Microbiol 1999; 37: 27602765.
  • 89
    Hongmanee P,Stender H,Rasmussen OF. Evaluation of a fluorescence in situ hybridization assay for differentiation between tuberculous and nontuberculous Mycobacterium species in smears of Lowenstein-Jensen and Mycobacteria growth indicator tube cultures using peptide nucleic acid probes. J Clin Microbiol 2001; 39: 10321035.
  • 90
    Moore DA,Evans CA,Gilman RH,Caviedes L,Coronel J,Vivar A,Sanchez E,Pinedo Y,Saravia JC,Salazar C,Oberhelman R,Hollm-Delgado MG,LaChira D,Escombe AR,Friedland JS. Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N Engl J Med 2006; 355: 15391550.
  • 91
    Resnick M,Schuldiner S,Bercovier H. Bacterial membrane potential analyzed by spectrofluorocytometry. Curr Microbiol 1985; 12: 183186.
  • 92
    Novo DJ,Perlmutter NG,Hunt RH,Shapiro HM. Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrob Agents Chemother 2000; 44: 827834.
  • 93
    Silverman JA,Perlmutter NG,Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47: 25382544.
  • 94
    Norden MA,Kurzynski TA,Bownds SE,Callister SM,Schell RF. Rapid susceptibility testing of Mycobacterium tuberculosis (H37Ra) by flow cytometry. J Clin Microbiol 1995; 33: 12311237.
  • 95
    Bownds SE,Kurzynski TA,Norden MA,Dufek JL,Schell RF. Rapid susceptibility testing for nontuberculosis mycobacteria using flow cytometry. J Clin Microbiol 1996; 34: 13861390.
  • 96
    Kirk SM,Schell RF,Moore AV,Callister SM,Mazurek GH. Flow cytometric testing of susceptibilities of Mycobacterium tuberculosis isolates to ethambutol, isoniazid, and rifampin in 24 hours. J Clin Microbiol 1998; 36: 15681573.
  • 97
    Moore AV,Kirk SM,Callister SM,Mazurek GH,Schell RF. Safe determination of susceptibility of Mycobacterium tuberculosis to antimycobacterial agents by flow cytometry. J Clin Microbiol 1999; 37: 479483.
  • 98
    Vena RM,Munson EL,DeCoster DJ,Croke CL,Fett DB,Callister SM,Schell RF. Flow cytometric testing of susceptibilities of Mycobacterium avium to amikacin, ciprofloxacin, clarithromycin and rifabutin in 24 hours. Clin Microbiol Infect 2000; 6: 368375.
  • 99
    Schell RF,Nardelli DT,DeCoster DJ,Kirk SM,Callister SM. Mycobacterium tuberculosis susceptibility testing by flow cytometry. Unit 11.7. In: RobinsonJP, DarzynkiewiczZ, DeanP,HibbsAR, OrfaoA, RabinovitchP, WheelessL, editors. Current Protocols in Cytometry. New York: Wiley; 2004. pp 11.7.111.7.8.
  • 100
    DeCoster DJ,Vena RM,Callister SM,Schell RF. Susceptibility testing of Mycobacterium tuberculosis: Comparison of the BACTEC TB-460 method and flow cytometric assay with the proportion method. Clin Microbiol Infect 2005; 11: 372378.
  • 101
    Fredricks BA,Decoster DJ,Kim Y,Sparks N,Callister SM,Schell RF. Rapid pyrazinamide susceptibility testing of Mycobacterium tuberculosis by flow cytometry. J Microbiol Methods 2006; 67: 266272.
  • 102
    Ryan C,Nguyen BT,Sullivan SJ. Rapid assay for mycobacterial growth and antibiotic susceptibility using gel microdrop encapsulation. J Clin Microbiol 1995; 33: 17201726.
  • 103
    Reis RS,Neves IJr,Lourenco SL,Fonseca LS,Lourenco MC. Comparison of flow cytometric and Alamar Blue tests with the proportional method for testing susceptibility of Mycobacterium tuberculosis to rifampin and isoniazid. J Clin Microbiol 2004; 42: 22472248.
  • 104
    Akselband Y,Cabral C,Shapiro DS,McGrath P. Rapid mycobacteria drug susceptibility testing using Gel Microdrop (GMD) Growth Assay and flow cytometry. J Microbiol Methods 2005; 62: 181197.
  • 105
    Stein PG,Lipkin LE,Shapiro HM. Spectre II. General-purpose microscope input for a computer. Science 1969; 166: 328333.
  • 106
    Shapiro HM,Bryan SD,Lipkin LE,Stein PG,Lemkin PF. Computer-aided microspectrophotometry of biological specimens. Exp Cell Res 1971; 67: 8189.
  • 107
    Mazzini G,Ferrari C,Baraldo N,Mazzini M,Angelini M. Improvements in fluorescence microscopy allowed by high power light emitting diodes. In: Méndez-VilasA, Labajos-BroncanoL, editors. Current Issues on Multidisciplinary Microscopy Research and Education, Vol. 2. Badajoz, Spain: FORMATEX; 2005. pp 181188. Available at http://www.formatex.org/micro2003/papers/181–188. pdf.
  • 108
    Wittrup KD,Westerman RJ,Desai R. Fluorescence array detector for large-field quantitative fluorescence cytometry. Cytometry 1994; 16: 206213.
  • 109
    Caviedes L,Lee TS,Gilman RH,Sheen P,Spellman E,Lee EH,Berg DE,Montenegro-James S. Rapid, efficient detection and drug susceptibility testing of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures. J Clin Microbiol 2000; 38: 12031208.
  • 110
    Caviedes L,Coronel J,Evans C,Leonard B,Gilman R,Moore D. MODS—A user guide. 2006. Available at http://www.upch.edu.pe/facien/dbmbqf/MODS_user_guide.pdf.
  • 111
    Middlebrook G,Dubos RJ,Pierce C. Virulence and morphologic characteristics of mammalian tubercle bacilli. J Exp Med 1947; 86: 175184.
  • 112
    Dubos RJ,Middlebrook G. Cytochemical reaction of virulent tubercle bacilli. Am Rev Tuberc 1948; 58: 698699.
  • 113
    Andreu N,Soto CY,Roca I,Martin C,Gibert I. Mycobacterium smegmatis displays the Mycobacterium tuberculosis virulence-related neutral red character when expressing the Rv0577 gene. FEMS Microbiol Lett 2004; 231: 283289.
  • 114
    Cardona PJ,Soto CY,Martin C,Giquel B,Agusti G,Guirado E,Sirakova T,Kolattukudy P,Julian E,Luquin M. Neutral-red reaction is related to virulence and cell wall methyl-branched lipids in Mycobacterium tuberculosis. Microbes Infect 2006; 8: 183190.
  • 115
    Okada D. Neutral red as a hydrophobic probe for monitoring neuronal activity. J Neurosci Methods 2000; 101: 8592.
  • 116
    Janossy G,Barry SM,Breen RAM,Hardy G,Lipman M,Kern F. The role of clinical flow cytometry in the interferon-gamma based diagnosis of active tuberculosis and its co-infection with HIV-1—A technically oriented review. Cytometry Part B Clin Cytom 2008; 74B ( Suppl): in press. doi://10.1002/cyto.b.20381 (this issue).
  • 117
    Streitz M,Tesfa L,Yildirim V,Yahyazadeh A,Ulrichs T,Lenkei R,Quassem A,Liebetrau G,Nomura L,Maecker H,Volk HD,Kern F. Loss of receptor on tuberculin-reactive T-cells marks active pulmonary tuberculosis. PLoS ONE 2007; 2: e735.