• 1
    Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med 1999; 341: 10511062.
  • 2
    Bloomfield CD, Lawrence D, Byrd JC, Carroll A, Pettenati MJ, Tantravahi R, Patil SR, Davey FR, Berg DT, Schiffer CA, et al. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res 1998; 58: 41734179.
  • 3
    Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, Rees J, Hann I, Stevens R, Burnett A, et al. The importance of diagnostic cytogenetics on outcome in AML: Analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92: 23222333.
  • 4
    Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, Pettenati MJ, Patil SR, Rao KW, Watson MS, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: Results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 43254336.
  • 5
    Advani AS, Rodriguez C, Jin T, Jawde RA, Saber W, Baz R, Kalaycio M, Sobecks R, Sekeres M, Tripp B, et al. Increased C-kit intensity is a poor prognostic factor for progression-free and overall survival in patients with newly diagnosed AML. Leuk Res 2008; 32: 913918.
  • 6
    Boissel N, Leroy H, Brethon B, Philippe N, de Botton S, Auvrignon A, Raffoux E, Leblanc T, Thomas X, Hermine O, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 2006; 20: 965970.
  • 7
    Bullinger L, Dohner K, Kranz R, Stirner C, Frohling S, Scholl C, Kim YH, Schlenk RF, Tibshirani R, Dohner H, et al. An FLT3 gene-expression signature predicts clinical outcome in normal karyotype AML. Blood 2008; 111: 44904495.
  • 8
    Dohner K, Schlenk RF, Habdank M, Scholl C, Rucker FG, Corbacioglu A, Bullinger L, Frohling S, Dohner H. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: Interaction with other gene mutations. Blood 2005; 106: 37403746.
  • 9
    Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L, Habdank M, Spath D, Morgan M, Benner A, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 19091918.
  • 10
    Schlenk RF, Dohner K. Impact of new prognostic markers in treatment decisions in acute myeloid leukemia. Curr Opin Hematol 2009; 16: 98104.
  • 11
    Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF, Haferlach T, Hiddemann W, Falini B. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005; 106: 37333739.
  • 12
    Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, Carroll AJ, Mrozek K, Vardiman JW, George SL, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: A Cancer and Leukemia Group B study. Cancer Res 2001; 61: 72337239.
  • 13
    Marcucci G. Molecular markers in acute myeloid leukemia. Clin Adv Hematol Oncol 2009; 7: 448451.
  • 14
    Marcucci G, Mrozek K, Bloomfield CD. Molecular heterogeneity and prognostic biomarkers in adults with acute myeloid leukemia and normal cytogenetics. Curr Opin Hematol 2005; 12: 6875.
  • 15
    Becker H, Marcucci G, Maharry K, Radmacher MD, Mrozek K, Margeson D, Whitman SP, Wu YZ, Schwind S, Paschka P, et al. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: A Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 596604.
  • 16
    Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud O, Gjertsen BT, Nolan GP. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 2004; 118: 217228.
  • 17
    Irish JM, Kotecha N, Nolan GP. Mapping normal and cancer cell signalling networks: Towards single-cell proteomics. Nat Rev Cancer 2006; 6: 146155.
  • 18
    Krutzik PO, Nolan GP. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 2006; 3: 361368.
  • 19
    Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005; 308: 523529.
  • 20
    Perez OD, Nolan GP. Phospho-proteomic immune analysis by flow cytometry: from mechanism to translational medicine at the single-cell level. Immunol Rev 2006; 210: 208228.
  • 21
    Kotecha N, Flores NJ, Irish JM, Simonds EF, Sakai DS, Archambeault S, Diaz-Flores E, Coram M, Shannon KM, Nolan GP, et al. Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell 2008; 14: 335343.
  • 22
    Kornblau SM, Minden MD, Rosen DB, Putta S, Cohen A, Covey T, Spellmeyer DC, Fantl WJ, Gayko U, Cesano A. Dynamic single-cell network profiles in acute myelogenous leukemia are associated with patient response to standard induction therapy. Clin Cancer Res 2010; 16: 37213733.
  • 23
    Cesano A, Rosen DB, Putta S, Gayko U, Cripe L, Sun Z, Uno H, Litzow MR, Tallman MS, Paietta E. Specimen source (BM or PB) does not affect proteomic signaling in patients with AML and circulating blasts. Blood (ASH Annual Meeting Abstracts) 2010; 116:Abstract 2693.
  • 24
    Lacayo NJ, Aileen C, Westfall M, Lackey A, Xin X, Gayko U, Putta S, Meshinchi S, Raimondi SC, Alonzo TA, Arceci RJ, et al. Single cell network profiling (SCNP) signatures predict response to induction therapy and relapse risk in pediatric patients with acute myeloid leukemia: Children's Oncology Group (COG) study POG-9421. Blood (ASH Annual Meeting Abstracts) 2010; 116:Abstract 954.
  • 25
    Covey TM, Cesano A. Modulated multiparametric phosphoflow cytometry in hematological malignancies: Technology and clinical applications. Best Pract Res Clin Haematol 2010; 23: 319331.
  • 26
    Purvis N, Stelzer G. Multi-platform, multi-site instrumentation and reagent standardization. Cytometry 1998; 33: 156165.
  • 27
    Stelzer GT, Goodpasture L. Use of multiparameter flow cytometry and immunophenotyping for the diagnosis and classification of acute myeloid leukemia. In: Stewart CC, Nicholson JKA, editors. Immunophenotyping. Wilmington, DE: Wiley-Liss; 2000. pp 215238.
  • 28
    Shults KE, Miller DT, Davis BH, Flye L, Hobbs LA, Stelzer GT. A standardized ZAP-70 assay—Lessons learned in the trenches. Cytometry Part B 2006; 70B: 276283.
  • 29
    Wang L, Gaigalas AK, Marti G, Abbasi F, Hoffman RA. Toward quantitative fluorescence measurements with multicolor flow cytometry. Cytometry Part A 2008; 73A: 279288.
  • 30
    Putta S, Spellmeyer D, Evensen E, Banville S, Friedland B, Rosen D, Soper D, Purvis N, Covey T, Francis-Lang H, et al. Informatics platform and workflows for robust high throughput single cell network profiling (SCNP). In: International Society for Advancement of Cytometry Annual Meeting abstract. Malden MA: Wiley-Blackwell; 2010.
  • 31
    Altman DG, Bland JM. Measurement in medicine: The analysis of method comparison studies. Statistician 1983; 32: 307317.
  • 32
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307310.
  • 33
    Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989; 45: 255268.
  • 34
    Cesano A, Gotlib JR, Lacayo NJ, Putta S, Lackey A, Gayko U, Kornblau SM. Sample cryopreservation does not affect functional read outs in SCNP assays: Implications for biomarker development. Blood (ASH Annual Meeting Abstracts) 2010; 116:Abstract 4843.