• myeloid nuclear differentiation antigen (MNDA);
  • myelodysplastic syndrome (MDS);
  • flow cytometry;
  • leukemia



Myeloid nuclear differentiation antigen (MNDA) is expressed in myelomonocytic cells with highest levels in mature granulocytes and monocytes. It is suggested to be expressed more weakly in patients with myelodysplastic syndromes (MDS). The analysis of MNDA therefore may improve diagnostic capabilities of multiparameter flow cytometry (MFC) in MDS.


We used MFC for detection of MNDA expression in 269 patients with suspected or known MDS, acute myeloid leukemia (AML) or chronic myelomonocytic leukemia (CMML), cytopenia of unknown cause or without malignancy (negative controls). Results were compared with the diagnoses revealed by cytomorphology (CM) and cytogenetics (CG).


Percentages of granulocytes and monocytes with diminished MNDA expression (dimG and dimM) were higher in patients with MDS (mean ± SD, 20% ± 20%, P < 0.001 and 31% ± 24%, P < 0.001) and AML (27% ± 27%, P = 0.007 and 45% ± 31%, P = 0.001) diagnosed by CM, vs. patients without MDS (8% ± 10% and 16% ± 11%), respectively. Significant differences were also found for mean fluorescence intensity (MFI) of MNDA in monocytes which was lower in MDS (mean ± SD, 71 ± 36, P = 0.004) and AML (55 ± 39, P < 0.001) vs. no MDS samples (85 ± 28), respectively. Within patients with MDS, cases with cytogenetic aberrations showed a trend to higher %dimG (24% ± 18%, P = 0.083) compared with those without (16% ± 21%). Cut-off values for %dimG (12%) and %dimM (22%) as well as for MFI in monocytes (72) were defined capable of discriminating between MDS and non-MDS.


MNDA expression in bone marrow cells can be assessed reliably by MFC and may facilitate evaluation of dyspoiesis when added to a standard MDS MFC panel. © 2012 International Clinical Cytometry Society