Flow cytometry-based assessment of mitoxantrone efflux from leukemic blasts varies with response to induction chemotherapy in acute myeloid leukemia

Authors


  • How to cite this article: Kim HP, Bernard L, Berkowitz J, Nitta J, Hogge DE. Flow cytometry-based assessment of mitoxantrone efflux from leukemic blasts varies with response to induction chemotherapy in acute myeloid leukemia. Cytometry Part B 2012; 82B: 283–294.

Abstract

Background:

Accurate prediction of chemotherapy drug resistance would aid treatment decisions in acute myeloid leukemia (AML). The aim of this study was to determine if mitoxantrone efflux from AML blasts would correlate with response to induction chemotherapy.

Methods:

Flow cytometry was used to measure the median fluorescence intensity (MFI) for AML blasts incubated with mitoxantrone [an ATP-binding cassette (ABC) transporter substrate] with or without coincubation with cyclosporine A (a broad-spectrum inhibitor of ABC transporters) and a ratio (MFIR) between the inhibited and uninhibited MFI was calculated.

Results:

Among 174 AML patient blast samples, the mean MFIR for complete remission (CR) patients was lower than that obtained for induction failure (IF) patients (mean MFIR ± SD 1.62 ± 0.53 for CR after one cycle of chemotherapy vs. 2.22 ± 1.29 for CR after two cycles and 2.59 ± 0.98 for IF, P < 0.001). Logistic regression analysis determined 2.45 as the MFIR threshold above which 29% of patients achieved CR vs. a CR rate of 84% when the MFIR was ≤ 2.45 (P < 0.0001). In AML patients with normal karyotype (n = 80), CR was obtained for 33% of patients with an MFIR > 2.45 vs. 89% of those with MFIR ≤ 2.45 (P < 0.0001). In patients > age 60 (n = 77), 30% vs. 87% of those with MFIR > vs. ≤ 2.45 achieved CR (P < 0.0001).

Conclusions:

This assay of ABC transporter function can potentially predict response to induction chemotherapy in AML. © 2012 International Clinical Cytometry Society

Ancillary