SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Reinherz EL, Kung PC, Goldstein G, Levey RH, Schlossman SF. Discrete stages of human intrathymic differentiation: Analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci USA 1980;77:15881592.
  • 2
    Terhorst C, van Agthoven A, LeClair K, Snow P, Reinherz E, Schlossman S. Biochemical studies of the human thymocyte cell-surface antigens T6, T9 and T10. Cell 1981;23:771780.
  • 3
    Maecker HT, McCoy JP, Nussenblatt R. Standardizing immunophenotyping for the Human Immunology Project. Nat Rev Immunol 2012;12:191200.
  • 4
    Muraoka O, Tanaka H, Itoh M, Ishihara K, Hirano T. Genomic structure of human BST-1. Immunol Lett 1996;54:14.
  • 5
    Katz F, Povey S, Parkar M, Schneider C, Sutherland R, Stanley K, Solomon E, Greaves M. Chromosome assignment of monoclonal antibody-defined determinants on human leukemic cells. Eur J Immunol 1983;13:10081013.
  • 6
    Ferrero E, Malavasi F. Human CD38, a leukocyte receptor and ectoenzyme, is a member of a novel eukaryotic gene family of nicotinamide adenine dinucleotide + -converting enzymes: Extensive structural homology with the genes for murine bone marrow stromal cell antigen 1 and aplysian ADP-ribosyl cyclase. J Immunol 1997;159:38583865.
  • 7
    Ferrero E, Saccucci F, Malavasi F. The making of a leukocyte receptor: Origin, genes and regulation of human CD38 and related molecules. Chem Immunol 2000;75:119.
  • 8
    Kishimoto H, Hoshino S, Ohori M, Kontani K, Nishina H, Suzawa M, Kato S, Katada T. Molecular mechanism of human CD38 gene expression by retinoic acid. Identification of retinoic acid response element in the first intron. J Biol Chem 1998;273:1542915434.
  • 9
    Song EK, Lee YR, Kim YR, Yeom JH, Yoo CH, Kim HK, Park HM, Kang HS, Kim JS, Kim UH, et al. NAADP mediates insulin-stimulated glucose uptake and insulin sensitization by PPARgamma in adipocytes. Cell Rep 2012;2:16071619.
  • 10
    Ferrero E, Saccucci F, Malavasi F. The human CD38 gene: Polymorphism, CpG island, and linkage to the CD157 (BST-1) gene. Immunogenetics 1999;49:597604.
  • 11
    Saborit-Villarroya I, Vaisitti T, Rossi D, D'Arena G, Gaidano G, Malavasi F, Deaglio S. E2A is a transcriptional regulator of CD38 expression in chronic lymphocytic leukemia. Leukemia 2011;25:479488.
  • 12
    Ortolan E, Vacca P, Capobianco A, Armando E, Crivellin F, Horenstein A, Malavasi F.CD157, the Janus of CD38 but with a unique personality. Cell Biochem Funct 2002;20:309322.
  • 13
    Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, Vaisitti T, Aydin S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 2008;88:841886.
  • 14
    Dong C, Willerford D, Alt FW, Cooper MD. Genomic organization and chromosomal localization of the mouse Bp3 gene, a member of the CD38/ADP-ribosyl cyclase family. Immunogenetics 1996;45:3543.
  • 15
    Bhan AK, Reinherz EL, Poppema S, McCluskey RT, Schlossman SF. Location of T cell and major histocompatibility complex antigens in the human thymus. J Exp Med 1980;152:771782.
  • 16
    Hernandez-Campo PM, Almeida J, Sanchez ML, Malvezzi M, Orfao A. Normal patterns of expression of glycosylphosphatidylinositol-anchored proteins on different subsets of peripheral blood cells: A frame of reference for the diagnosis of paroxysmal nocturnal hemoglobinuria. Cytometry B Clin Cytom B 2006;70:7181.
  • 17
    Ghannadan M, Baghestanian M, Wimazal F, Eisenmenger M, Latal D, Kargul G, Walchshofer S, Sillaber C, Lechner K, Valent P. Phenotypic characterization of human skin mast cells by combined staining with toluidine blue and CD antibodies. J Invest Dermatol 1998;111:689695.
  • 18
    Ross JA, Ansell I, Hjelle JT, Anderson JD, Miller-Hjelle MA, Dobbie JW. Phenotypic mapping of human mesothelial cells. Adv Perit Dial 1998;14:2530.
  • 19
    Shimaoka Y, Attrep JF, Hirano T, Ishihara K, Suzuki R, Toyosaki T, Ochi T, Lipsky PE. Nurse-like cells from bone marrow and synovium of patients with rheumatoid arthritis promote survival and enhance function of human B cells. J Clin Invest 1998;102:606618.
  • 20
    Wimazal F, Ghannadan M, Muller MR, End A, Willheim M, Meidlinger P, Schernthaner GH, Jordan JH, Hagen W, Agis H, et al. Expression of homing receptors and related molecules on human mast cells and basophils: A comparative analysis using multi-color flow cytometry and toluidine blue/immunofluorescence staining techniques. Tissue Antigens 1999;54:499507.
  • 21
    Lavagno L, Ferrero E, Ortolan E, Malavasi F, Funaro A.CD157 is part of a supramolecular complex with CD11b/CD18 on the human neutrophil cell surface. J Biol Regul Homeost Agents 2007;21:511.
  • 22
    Yilmaz OH, Katajisto P, Lamming DW, Gultekin Y, Bauer-Rowe KE, Sengupta S, Birsoy K, Dursun A, Yilmaz VO, Selig M, et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 2012;486:490495.
  • 23
    Alessio M, Roggero S, Funaro A, De Monte LB, Peruzzi L, Geuna M, Malavasi F.CD38 molecule: Structural and biochemical analysis on human T lymphocytes, thymocytes, and plasma cells. J Immunol 1990;145:878884.
  • 24
    Dianzani U, Malavasi F. Lymphocyte adhesion to endothelium. Crit Rev Immunol 1995;15:167200.
  • 25
    Newman PJ. Switched at birth: A new family for PECAM-1. J Clin Invest 1999;103:59.
  • 26
    Deaglio S, Dianzani U, Horenstein AL, Fernandez JE, van Kooten C, Bragardo M, Funaro A, Garbarino G, Di Virgilio F, Banchereau J, et al. Human CD38 ligand. A 120-KDA protein predominantly expressed on endothelial cells. J Immunol 1996;156:727734.
  • 27
    Horenstein AL, Stockinger H, Imhof BA, Malavasi F.CD38 binding to human myeloid cells is mediated by mouse and human CD31. Biochem J 1998;330 ( Part 3):11291135.
  • 28
    Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, Garbarino G, Dianzani U, Stockinger H, Malavasi F. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol 1998;160:395402.
  • 29
    Deaglio S, Mallone R, Baj G, Arnulfo A, Surico N, Dianzani U, Mehta K, Malavasi F.CD38/CD31, a receptor/ligand system ruling adhesion and signaling in human leukocytes. Chem Immunol 2000;75:99120.
  • 30
    Mallone R, Ferrua S, Morra M, Zocchi E, Mehta K, Notarangelo LD, Malavasi F. Characterization of a CD38-like 78-kilodalton soluble protein released from B cell lines derived from patients with X-linked agammaglobulinemia. J Clin Invest 1998;101:28212830.
  • 31
    Hara-Yokoyama M, Kukimoto-Niino M, Terasawa K, Harumiya S, Podyma-Inoue KA, Hino N, Sakamoto K, Itoh S, Hashii N, Hiruta Y, et al. Tetrameric interaction of the ectoenzyme CD38 on the cell surface enables its catalytic and raft-association activities. Structure 2012;20:15851595.
  • 32
    Zhao YJ, Lam CM, Lee HC. The membrane-bound enzyme CD38 exists in two opposing orientations. Sci Signal 2012;5:ra67.
  • 33
    Deaglio S, Vaisitti T, Billington R, Bergui L, Omede P, Genazzani AA, Malavasi F.CD38/CD19: A lipid raft-dependent signaling complex in human B cells. Blood 2007;109:53905398.
  • 34
    Hussain AM, Lee HC, Chang CF. Functional expression of secreted mouse BST-1 in yeast. Protein Expr Purif 1998;12:133137.
  • 35
    Okuyama Y, Ishihara K, Kimura N, Hirata Y, Sato K, Itoh M, Ok LB, Hirano T. Human BST-1 expressed on myeloid cells functions as a receptor molecule. Biochem Biophys Res Commun 1996;228:838845.
  • 36
    Ishihara K, Hirano T. BST-1/CD157 regulates the humoral immune responses in vivo. Chem Immunol 2000;75:235255.
  • 37
    Funaro A, Ortolan E, Ferranti B, Gargiulo L, Notaro R, Luzzatto L, Malavasi F.CD157 is an important mediator of neutrophil adhesion and migration. Blood 2004;104:42694278.
  • 38
    Ortolan E, Tibaldi EV, Ferranti B, Lavagno L, Garbarino G, Notaro R, Luzzatto L, Malavasi F, Funaro A.CD157 plays a pivotal role in neutrophil transendothelial migration. Blood 2006;108:42144222.
  • 39
    Lo Buono N, Parrotta R, Morone S, Bovino P, Nacci G, Ortolan E, Horenstein AL, Inzhutova A, Ferrero E, Funaro A. The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes. J Biol Chem 2011;286:1868118691.
  • 40
    States DJ, Walseth TF, Lee HC. Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem Sci 1992;17:495.
  • 41
    Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM, Walseth TF, Lee HC. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 1993;262:10561059.
  • 42
    Kim H, Jacobson EL, Jacobson MK. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science 1993;261:13301333.
  • 43
    Zocchi E, Franco L, Guida L, Calder L, De Flora A. Self-aggregation of purified and membrane-bound erythrocyte CD38 induces extensive decrease of its ADP-ribosyl cyclase activity. FEBS Lett 1995;359:3540.
  • 44
    Takasawa S, Tohgo A, Noguchi N, Koguma T, Nata K, Sugimoto T, Yonekura H, Okamoto H. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J Biol Chem 1993;268:2605226054.
  • 45
    Aarhus R, Graeff RM, Dickey DM, Walseth TF, Lee HC. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem 1995;270:3032730333.
  • 46
    Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BV, et al. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 1999;398:7073.
  • 47
    Morra M, Zubiaur M, Terhorst C, Sancho J, Malavasi F.CD38 is functionally dependent on the TCR/CD3 complex in human T cells. FASEB J 1998;12:581592.
  • 48
    Meszaros LG, Bak J, Chu A. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2 + channel. Nature 1993;364:7679.
  • 49
    Kuemmerle JF, Makhlouf GM. Agonist-stimulated cyclic ADP ribose. Endogenous modulator of Ca(2 +)-induced Ca2 + release in intestinal longitudinal muscle. J Biol Chem 1995;270:2548825494.
  • 50
    Takasawa S, Nata K, Yonekura H, Okamoto H. Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science 1993;259:370373.
  • 51
    Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O, Shnayder NA, Yamada K, Noda M, Seike T, et al. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 2007;446:4145.
  • 52
    Grimaldi JC, Balasubramanian S, Kabra NH, Shanafelt A, Bazan JF, Zurawski G, Howard MC.CD38-mediated ribosylation of proteins. J Immunol 1995;155:811817.
  • 53
    Han MK, Cho YS, Kim YS, Yim CY, Kim UH. Interaction of two classes of ADP-ribose transfer reactions in immune signaling. J Biol Chem 2000;275:2079920805.
  • 54
    Malavasi F, Deaglio S, Zaccarello G, Horenstein AL, Chillemi A, Audrito V, Serra S, Gandione M, Zitella A, Tizzani A. The hidden life of NAD+ -consuming ectoenzymes in the endocrine system. J Mol Endocrinol 2010;45:183191.
  • 55
    Audrito V, Vaisitti T, Rossi D, Gottardi D, D'Arena G, Laurenti L, Gaidano G, Malavasi F, Deaglio S. Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Cancer Res 2011;71:44734483.
  • 56
    Haag F, Adriouch S, Brass A, Jung C, Moller S, Scheuplein F, Bannas P, Seman M, Koch-Nolte F. Extracellular NAD andATP: Partners in immune cell modulation. Purinergic Signal 2007;3:7181.
  • 57
    Moreschi I, Bruzzone S, Bodrato N, Usai C, Guida L, Nicholas RA, Kassack MU, Zocchi E, De Flora A. NAADP + is an agonist of the human P2Y11 purinergic receptor. Cell Calcium 2008;43:344355.
  • 58
    Funaro A, Horenstein AL, Calosso L, Morra M, Tarocco RP, Franco L, De Flora A, Malavasi F. Identification and characterization of an active soluble form of human CD38 in normal and pathological fluids. Int Immunol 1996;8:16431650.
  • 59
    Zumaquero E, Munoz P, Cobo M, Lucena G, Pavon EJ, Martin A, Navarro P, Garcia-Perez A, Ariza-Veguillas A, Malavasi F, et al. Exosomes from human lymphoblastoid B cells express enzymatically active CD38 that is associated with signaling complexes containing CD81, Hsc-70 and Lyn. Exp Cell Res 2010;316:26922706.
  • 60
    Chiorazzi N, Ferrarini M. Cellular origin(s) of chronic lymphocytic leukemia: Cautionary notes and additional considerations and possibilities. Blood 2011;117:17811791.
  • 61
    Chiorazzi N. Implications of new prognostic markers in chronic lymphocytic leukemia. Hematol Am Soc Hematol Educ Program 2012;2012:7687.
  • 62
    Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N.CD38 and chronic lymphocytic leukemia: A decade later. Blood 2011;118:34703478.
  • 63
    Deaglio S, Capobianco A, Bergui L, Durig J, Morabito F, Duhrsen U, Malavasi F.CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells. Blood 2003;102:21462155.
  • 64
    Vaisitti T, Aydin S, Rossi D, Cottino F, Bergui L, D'Arena G, Bonello L, Horenstein AL, Brennan P, Pepper C, et al. CD38 increases CXCL12-mediated signals and homing of chronic lymphocytic leukemia cells. Leukemia 2010;24:958969.
  • 65
    Zucchetto A, Benedetti D, Tripodo C, Bomben R, Dal Bo M, Marconi D, Bossi F, Lorenzon D, Degan M, Rossi FM, et al. CD38/CD31, the CCL3 and CCL4 chemokines, and CD49d/vascular cell adhesion molecule-1 are interchained by sequential events sustaining chronic lymphocytic leukemia cell survival. Cancer Res 2009;69:40014009.
  • 66
    Zucchetto A, Vaisitti T, Benedetti D, Tissino E, Bertagnolo V, Rossi D, Bomben R, Dal Bo M, Del Principe MI, Gorgone A, et al. The CD49d/CD29 complex is physically and functionally associated with CD38 in B-cell chronic lymphocytic leukemia cells. Leukemia 2012;26:13011312.
  • 67
    Colaianni G, Di Benedetto A, Zhu LL, Tamma R, Li J, Greco G, Peng Y, Dell'Endice S, Zhu G, Cuscito C, et al. Regulated production of the pituitary hormone oxytocin from murine and human osteoblasts. Biochem Biophys Res Commun 2011;411:512515.
  • 68
    Iqbal J, Zaidi M. Extracellular NAD+ metabolism modulates osteoclastogenesis. Biochem Biophys Res Commun 2006;349:533539.
  • 69
    Colaianni G, Sun L, Di Benedetto A, Tamma R, Zhu LL, Cao J, Grano M, Yuen T, Colucci S, Cuscito C, et al. Bone marrow oxytocin mediates the anabolic action of estrogen on the skeleton. J Biol Chem 2012;287:2915929167.
  • 70
    Krause DS, Scadden DT, Preffer FI. The hematopoietic stem cell niche—Home for friend and foe?Cytometry B Clin Cytom 2013;84B:720.
  • 71
    Gao Y, Camacho LH, Mehta K. Retinoic acid-induced CD38 antigen promotes leukemia cells attachment and interferon-gamma/interleukin-1beta-dependent apoptosis of endothelial cells: Implications in the etiology of retinoic acid syndrome. Leuk Res 2007;31:455463.
  • 72
    Drach J, McQueen T, Engel H, Andreeff M, Robertson KA, Collins SJ, Malavasi F, Mehta K. Retinoic acid-induced expression of CD38 antigen in myeloid cells is mediated through retinoic acid receptor-alpha. Cancer Res 1994;54:17461752.
  • 73
    Mehta K, Shahid U, Malavasi F. Human CD38, a cell-surface protein with multiple functions. FASEB J 1996;10:14081417.
  • 74
    Le Page C, Sanceau J, Drapier JC, Wietzerbin J. Inhibitors of ADP-ribosylation impair inducible nitric oxide synthase gene transcription through inhibition of NF kappa B activation. Biochem Biophys Res Commun 1998;243:451457.
  • 75
    Ortolan E, Arisio R, Morone S, Bovino P, Lo-Buono N, Nacci G, Parrotta R, Katsaros D, Rapa I, Migliaretti G, et al. Functional role and prognostic significance of CD157 in ovarian carcinoma. J Natl Cancer Inst 2010;102:11601177.
  • 76
    Morone S, Lo-Buono N, Parrotta R, Giacomino A, Nacci G, Brusco A, Larionov A, Ostano P, Mello-Grand M, Chiorino G, et al. Overexpression of CD157 contributes to epithelial ovarian cancer progression by promoting mesenchymal differentiation. PLoS One 2012;7:e43649.
  • 77
    Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T, Watanabe M, Takeda A, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet 2009;41:13031307.
  • 78
    Saad M, Lesage S, Saint-Pierre A, Corvol JC, Zelenika D, Lambert JC, Vidailhet M, Mellick GD, Lohmann E, Durif F, et al. Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson's disease in the European population. Hum Mol Genet 2011;20:615627.
  • 79
    Zhu LH, Luo XG, Zhou YS, Li FR, Yang YC, Ren Y, Pang H. Lack of association between three single nucleotide polymorphisms in the PARK9, PARK15, and BST1 genes and Parkinson's disease in the northern Han Chinese population. Chin Med J (Engl)2012;125:588592.
  • 80
    Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, Simon-Sanchez J, Schulte C, Lesage S, Sveinbjornsdottir S, et al. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: A meta-analysis of genome-wide association studies. Lancet 2011;377:641649.
  • 81
    Gonzalez-Escribano MF, Aguilar F, Torres B, Sanchez-Roman J, Nunez-Roldan A.CD38 polymorphisms in Spanish patients with systemic lupus erythematosus. Hum Immunol 2004;65:660664.
  • 82
    Giorgi JV, Ho HN, Hirji K, Chou CC, Hultin LE, O'Rourke S, Park L, Margolick JB, Ferbas J, Phair JP.CD8 + lymphocyte activation at human immunodeficiency virus type 1 seroconversion: Development of HLA-DR + CD38- CD8 + cells is associated with subsequent stable CD4 + cell levels. The Multicenter AIDS Cohort Study Group. J Infect Dis 1994;170:775781.
  • 83
    Savarino A, Bottarel F, Malavasi F, Dianzani U. Role of CD38 in HIV-1 infection: An epiphenomenon of T-cell activation or an active player in virus/host interactions?Aids 2000;14:10791089.
  • 84
    Rosso R, Fenoglio D, Terranova MP, Lantieri F, Risso D, Pontali E, Setti M, Cossarizza A, Ravetti JL, Viscoli C, et al. Relevance of CD38 expression on CD8 T cells to evaluate antiretroviral therapy response in HIV-1-infected youths. Scand J Immunol 2010;71:4551.
  • 85
    Coetzee LM, Tay SS, Lawrie D, Janossy G, Glencross DK. From research tool to routine test: CD38 monitoring in HIV patients. Cytometry B Clin Cytom 2009;76B:375384.
  • 86
    Mallone R, Ortolan E, Pinach S, Volante M, Zanone MM, Bruno G, Baj G, Lohmann T, Cavallo-Perin P, Malavasi F.Anti-CD38 autoantibodies: Characterisation in new-onset type I diabetes and latent autoimmune diabetes of the adult (LADA) and comparison with other islet autoantibodies. Diabetologia 2002;45:16671677.
  • 87
    Mallone R, Ortolan E, Baj G, Funaro A, Giunti S, Lillaz E, Saccucci F, Cassader M, Cavallo-Perin P, Malavasi F. Autoantibody response to CD38 in Caucasian patients with type 1 and type 2 diabetes: Immunological and genetic characterization. Diabetes 2001;50:752762.
  • 88
    Lerer E, Levi S, Israel S, Yaari M, Nemanov L, Mankuta D, Nurit Y, Ebstein RP. Low CD38 expression in lymphoblastoid cells and haplotypes are both associated with autism in a family-based study. Autism Res 2010;3:293302.
  • 89
    Munesue T, Yokoyama S, Nakamura K, Anitha A, Yamada K, Hayashi K, Asaka T, Liu HX, Jin D, Koizumi K, et al. Two genetic variants of CD38 in subjects with autism spectrum disorder and controls. Neurosci Res 2010;67:181191.
  • 90
    Riebold M, Mankuta D, Lerer E, Israel S, Zhong S, Nemanov L, Monakhov MV, Levi S, Yirmiya N, Yaari M, et al. All-trans retinoic acid upregulates reduced CD38 transcription in lymphoblastoid cell lines from Autism spectrum disorder. Mol Med 2011;17:799806.
  • 91
    Salmina AB, Lopatina O, Ekimova MV, Mikhutkina SV, Higashida H.CD38/cyclic ADP-ribose system: A new player for oxytocin secretion and regulation of social behaviour. J Neuroendocrinol 2010;22:380392.
  • 92
    Malavasi F. Editorial: CD38 and retinoids: A step toward a cure. J Leukoc Biol 2011;90:217219.
  • 93
    Ebstein RP, Mankuta D, Yirmiya N, Malavasi F. Are retinoids potential therapeutic agents in disorders of social cognition including autism?FEBS Lett 2011;585:15291536.
  • 94
    Patton DT, Wilson MD, Rowan WC, Soond DR, Okkenhaug K. The PI3K p110delta regulates expression of CD38 on regulatory T cells. PLoS One 2011;6:e17359.
  • 95
    Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, Mauri C.CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 2010;32:129140.
  • 96
    Yu A, Zhu L, Altman NH, Malek TR. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity 2009;30:204217.
  • 97
    Hubert S, Rissiek B, Klages K, Huehn J, Sparwasser T, Haag F, Koch-Nolte F, Boyer O, Seman M, Adriouch S. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J Exp Med 2010;207:25612568.
  • 98
    Bahri R, Bollinger A, Bollinger T, Orinska Z, Bulfone-Paus S. Ectonucleotidase CD38 demarcates regulatory, memory-like CD8(+) T cells with IFN-gamma-mediated suppressor activities. PLoS One 2012;7:e45234.
  • 99
    Goding JW, Terkeltaub R, Maurice M, Deterre P, Sali A, Belli SI. Ecto-phosphodiesterase/pyrophosphatase of lymphocytes and non-lymphoid cells: Structure and function of the PC-1 family. Immunol Rev 1998;161:1126.
  • 100
    Massaia M, Perrin L, Bianchi A, Ruedi J, Attisano C, Altieri D, Rijkers GT, Thompson LF.Human T cell activation. Synergy between CD73 (ecto-5′-nucleotidase) and signals delivered through CD3 and CD2 molecules. J Immunol 1990;145:16641674.
  • 101
    Goding JW, Howard MC. Ecto-enzymes of lymphoid cells. Immunol Rev 1998;161:510.