SEARCH

SEARCH BY CITATION

LITERATURE CITED

  • 1
    Pui C-H, Evans WE. Acute lymphoblastic leukemia. N Engl J Med 2006;354:166167.
  • 2
    Bradstock KF, Janossy G, Tidman N, Papageorgiou ES, Prentice HG, Willoughby M, Hoffbrand AV. Immunological monitoring of residual disease in treated thymic acute lymphoblastic leukaemia. Leuk Res 1981;5:301309.
  • 3
    Szczepański T, Orfão A, van der Velden VH, San Miguel JF, van Dongen JJ. Minimal residual disease in leukaemia patients. Lancet Oncol 2001;2:409417.
  • 4
    Campana D. Determination of minimal residual disease in leukaemia patients. Br J Haematol 2003;121:823838.
  • 5
    Brisco MJ, Condon J, Hughes E, Neoh SH, Sykes PJ, Seshadri R, Toogood I, Waters K, Tauro G, Ekert H. Outcome prediction in childhood acute lymphoblastic leukaemia by molecular quantification of residual disease at the end of induction. Lancet 1994;343:196200.
  • 6
    van Dongen JJ, Seriu T, Panzer-Grümayer ER, Biondi A, Pongers-Willemse MJ, Corral L, Stolz F, Schrappe M, Masera G, Kamps WA, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998;352:17311738.
  • 7
    Coustan-Smith E, Sancho J, Behm FG, Hancock ML, Razzouk BI, Ribeiro RC, Rivera GK, Rubnitz JE, Sandlund JT, Pui CH, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 2002;100:5258.
  • 8
    Cavé H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J, Bakkus M, Thielemans K, Grandchamp B, Vilmer E. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer Childhood-Leukemia Cooperative Group. N Engl J Med 1998;339:591598.
  • 9
    Eckert C, Biondi A, Seeger K, Cazzaniga G, Hartmann R, Beyermann B, Pogodda M, Proba J, Henze G. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet 2001;358:12391241.
  • 10
    Dworzak MN, Fröschl G, Printz D, Mann G, Pötschger U, Mühlegger N, Fritsch G, Gadner H; Austrian Berlin-Frankfurt-Münster Study Group. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood 2002; 99:19521958.
  • 11
    Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL, Linda S, Martin PL, Pullen DJ, Viswanatha D, et al; Children's Oncology Group. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: A Children's Oncology Group study. Blood 2008;111:54775485.
  • 12
    Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grümayer R, Möricke A, Aricò M, Zimmermann M, Mann G, De Rossi G, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: Results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010;115:32063214.
  • 13
    Pui CH, Campana D, Evans WE. Childhood acute lymphoblastic leukaemia. Current status and future perspectives. Lancet Oncol 2001;2:597607.
  • 14
    Cazzaniga G, Gaipa G, Rossi V, Biondi A. Minimal residual disease as a surrogate marker for risk assignment to ALL patients. Rev Clin Exp Hematol 2003;7:292323.
  • 15
    van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: Principles, approaches, and laboratory aspects. Leukemia 2003;17:10131034.
  • 16
    van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, Flohr T, Sutton R, Cave H, Madsen HO, Cayuela JM, et al; European Study Group on MRD detection in ALL (ESG-MRD-ALL). Analysis of minimal residual disease by Ig/TCR gene rearrangements: Guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007;21:604611.
  • 17
    Campana D. Status of minimal residual disease testing in childhood haematological malignancies. Br J Haematol 2008;143:481489.
  • 18
    Flohr T, Schrauder A, Cazzaniga G, Panzer-Grümayer R, van der Velden V, Fischer S, Stanulla M, Basso G, Niggli FK, Schäfer BW, et al; International BFM Study Group (I-BFM-SG). Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008;22:771782.
  • 19
    Foroni L, Harrison CJ, Hoffbrand AV, Potter MN. Investigation of minimal residual disease in childhood and adult acute lymphoblastic leukaemia by molecular analysis. Br J Haematol. 1999;105:724.
  • 20
    Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P, Gonzalez M, Bartram CR, Panzer-Grümayer ER, Biondi A, et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: Report of the BIOMED-1 CONCERTED ACTION: Investigation of minimal residual disease in acute leukemia. Leukemia 1999;13:110118.
  • 21
    Campana D, Coustan-Smith E. Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002;15:119.
  • 22
    van der Velden VH, Panzer-Grümayer ER, Cazzaniga G, Flohr T, Sutton R, Schrauder A, Basso G, Schrappe M, Wijkhuijs JM, Konrad M, et al. Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia 2007;21:706713.
  • 23
    Dworzak MN, Gaipa G, Ratei R, Veltroni M, Schumich A, Maglia O, Karawajew L, Benetello A, Pötschger U, Husak Z, et al. Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: Multicentric assessment is feasible. Cytometry B Clin Cytom 2008;74B:331340.
  • 24
    Cazzaniga G, Valsecchi MG, Gaipa G, Conter V, Biondi A. Defining the correct role of minimal residual disease tests in the management of acute lymphoblastic leukaemia. Br J Haematol 2011;155:4552.
  • 25
    Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK. A deep profiler's guide to cytometry. Trends Immunol 2012;33:32332.
  • 26
    Baumgarth N, Roederer M. A practical approach to multicolor flow cytometry for immunophenotyping. J Immunol Methods 2000;243:7797.
  • 27
    Lansdorp PM, Smith C, Safford M, Terstappen LW, Thomas TE. Single laser three color immunofluorescence staining procedures based on energy transfer between phycoerythrin and cyanine 5. Cytometry 1991;12:723730.
  • 28
    Roederer M, Kantor AB, Parks DR, Herzenberg LA. Cy7PE and Cy7APC: Bright new probes for immunofluorescence. Cytometry 1996; 24:191197.
  • 29
    De Rosa SC, Brenchley J, Roederer M. Beyond six colors: A new era in flow cytometry. Nature Med 2003;9:112117.
  • 30
    Service RF. Getting a charge out of plastics. Science 2000;290:425427.
  • 31
    Chattopadhyay PK, Price DA, Harper TF, Betts MR, Yu J, Gostick E, Perfetto SP, Goepfert P, Koup RA, De Rosa SC, et al. Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nature Med 2006;12:972977.
  • 32
    Preffer F, Dombkowski D. Advances in complex multiparameter flow cytometry technology: Applications in stem cell research. Cytometry B Clin Cytom 2009;76B:295314.
  • 33
    Björklund E, Gruber A, Mazur J, Mårtensson A, Hansson M, Porwit A. CD34+ cell subpopulations detected by 8-color flow cytometry in bone marrow and in peripheral blood stem cell collections: Application for MRD detection in leukemia patients. Int J Hematol 2009;90:292302.
  • 34
    Kamnesh RP, Mund JA, Johnson C, Vik TA, Ingram DA, Case J. Polychromatic flow cytometry identifies novel subsets of circulating cells with angiogenic potential in pediatric solid tumors. Cytometry B Clin Cytom 2011;80B:335338.
  • 35
    Mund JA, Estes ML, Yoder MC, Ingram DA Jr, Case J. Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler Thromb Vasc Biol 2012;32:10451053.
  • 36
    Preijers FW, Huys E, Moshaver B. OMIP-010: A new 10-color monoclonal antibody panel for polychromatic immunophenotyping of small hematopoietic cell samples. Cytometry A 2012;81A:453455.
  • 37
    Basso G, Veltroni M, Valsecchi MG, Dworzak MN, Ratei R, Silvestri D, Benetello A, Buldini B, Maglia O, Masera G, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol 2009;27:51685174.
  • 38
    Lorenzana R, Coustan-Smith E, Antillon F, Ribeiro RC, Campana D. Simple methods for the rapid exchange of flow cytometric data between remote centers. Leukemia 2000; 14:336337.
  • 39
    Perfetto SP, Ambrozak D, Nguyen R, Chattopadhyay P, Roederer M. Quality assurance for polychromatic flow cytometry. Nat Protoc 2006;1:15221530.
  • 40
    Perfetto SP, Ambrozak D, Nguyen R, Chattopadhyay PK, Roederer M. Quality assurance for polychromatic flow cytometry using a suite of calibration beads. Nat Protoc 2012;7:20672079.
  • 41
    Lanza F, Moretti S, Castagnari B, Montanelli F, Latorraca A, Ferrari L, Bardi A, Dominici M, Campioni D, Dabusti M, et al. Assessment of distribution of CD34 epitope classes in fresh and cryopreserved peripheral blood progenitor cells and acute myeloid leukemic blasts. Haematologica 1999;84:969977.
  • 42
    Rothe G, Schmitz G. Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies. Working Group on Flow Cytometry and Image Analysis. Leukemia 1996;10:877895.
  • 43
    DiGiuseppe JA, Cardinali J. Improved compensation of the fluorochrome AmCyan using cellular controls. Cytometry B Clin Cytom 2011;80B:191194.
  • 44
    Rimsza LM, Larson RS, Winter SS, Foucar K, Chong YY, Garner KW, Leith CP. Benign hematogone-rich lymphoid proliferations can be distinguished from B-lineage acute lymphoblastic leukemia by integration of morphology, immunophenotype, adhesion molecule expression, and architectural features. Am J Clin Pathol 2000;114:6675.
  • 45
    McKenna RW, Washington LT, Aquino DB, Picker LJ, Kroft SH. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood 2001;98:24982507.
  • 46
    Hurwitz CA, Loken MR, Graham ML, Karp JE, Borowitz MJ, Pullen DJ, Civin CI. Asynchronous antigen expression in B lineage acute lymphoblastic leukemia. Blood 1988;72:299307.
  • 47
    Lúcio P, Parreira A, van den Beemd MW, van Lochem EG, van Wering ER, Baars E, Porwit-MacDonald A, Bjorklund E, Gaipa G, Biondi A, et al. Flow cytometric analysis of normal B cell differentiation: A frame of reference for the detection of minimal residual disease in precursor-B- ALL. Leukemia 1999;13:419427.
  • 48
    Campana D, Coustan-Smith E. Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry 1999;38:139152.
  • 49
    Ciudad J, San Miguel JF, López-Berges MC, Vidriales B, Valverde B, Ocqueteau M, Mateos G, Caballero MD, Hernández J, Moro MJ, et al. Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol 1998;16:37743781.
  • 50
    Coustan-Smith E, Ribeiro RC, Stow P, Zhou Y, Pui CH, Rivera GK, Pedrosa F, Campana D. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood 2006;108:97102.
  • 51
    Wells DA, Sale GE, Shulman HM, Myerson D, Bryant EM, Gooley T, Loken MR. Multidimensional flow cytometry of marrow can differentiate leukemic from normal lymphoblasts and myeloblasts after chemotherapy and bone marrow transplantation. Am J Clin Pathol 1998;110:8494.
  • 52
    Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC, Ribeiro RC, Rubnitz JE, Raimondi SC, Onciu M, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009;360:27302741.
  • 53
    Lucio P, Gaipa G, van Lochem EG, van Wering ER, Porwit-MacDonald A, Faria T, Bjorklund E, Biondi A, van den Beemd MW, Baars E, et al; BIOMED-I. BIOMED-I concerted action report: Flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation. Leukemia 2001;15:11851192.
  • 54
    Muzzafar T, Medeiros LJ, Wang SA, Brahmandam A, Thomas DA, Jorgensen JL. Aberrant underexpression of CD81 in precursor B-cell acute lymphoblastic leukemia: Utility in detection of minimal residual disease by flow cytometry. Am.J Clin Pathol 2009;132:692698.
  • 55
    DiGiuseppe JA, Fuller SG, Borowitz MJ. Overexpression of CD49f in precursor B-cell acute lymphoblastic leukemia: Potential usefulness in minimal residual disease detection. Cytometry B Clin Cytom 2009;76B:150155.
  • 56
    Rhein P, Mitlohner R, Basso G, Gaipa G, Dworzak MN, Kirschner-Schwabe R, Hagemeier C, Stanulla M, Schrappe M, Ludwig WD, et al. CD11b is a therapy resistance- and minimal residual disease-specific marker in precursor B-cell acute lymphoblastic leukemia. Blood 2010;115:37633771.
  • 57
    Chen JS, Coustan-Smith E, Suzuki T, Neale GA, Mihara K, Pui CH, Campana D. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood 2001;97:21152120.
  • 58
    Veltroni M, De Zen L, Sanzari MC, Maglia O, Dworzak MN, Ratei R, Biondi A, Basso G, Gaipa G; I-BFM-ALL-FCM-MRD-Study Group. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: Implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica 2003;88:12451252.
  • 59
    Gaipa G, Basso G, Maglia O, Leoni V, Faini A, Cazzaniga G, Bugarin C, Veltroni M, Michelotto B, Ratei R, Coliva T, et al; I-BFM-ALL-FCM-MRD Study Group. Drug-induced immunophenotypic modulation in childhood ALL: Implications for minimal residual disease detection. Leukemia 2005;19:4956.
  • 60
    Lee RV, Braylan RC, Rimsza LM. CD58 expression decreases as nonmalignant B cells mature in bone marrow and is frequently overexpressed in adult and pediatric precursor B-cell acute lymphoblastic leukemia. Am.J Clin Pathol 2005;123:119124.
  • 61
    Mejstríková E, Fronková E, Kalina T, Omelka M, Batinić D, Dubravcić K, Pospísilová K, Vásková M, Luria D, Cheng SH, et al. Detection of residual B precursor lymphoblastic leukemia by uniform gating flow cytometry. Pediatr. Blood Cancer 2010;54:6270.
  • 62
    Coustan-Smith E, Song G, Clark C, Key L, Liu P, Mehrpooya M, Stow P, Su X, Shurtleff S, Pui CH, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2011;117:62676276.
  • 63
    Solly F, Angelot F, Garand R, Ferrand C, Seillès E, Schillinger F, Decobecq A, Billot M, Larosa F, Plouvier E, et al. CD304 is preferentially expressed on a subset of B-lineage acute lymphoblastic leukemia and represents a novel marker for minimal residual disease detection by flow cytometry. Cytometry A 2012;81A:1724.
  • 64
    Djokic M, Björklund E, Blennow E, Mazur J, Söderhäll S, Porwit A. Overexpression of CD123 correlates with the hyperdiploid genotype in acute lymphoblastic leukemia. Haematologica 2009;94:10161019.
  • 65
    Ratei R, Basso G, Dworzak M, Gaipa G, Veltroni M, Rhein P, Biondi A, Schrappe M, Ludwig WD, Karawajew L; AIEOP-BFM-FCM-MRD-Study Group. Monitoring treatment response of childhood precursor B-cell acute lymphoblastic leukemia in the AIEOP-BFM-ALL 2000 protocol with multiparameter flow cytometry: Predictive impact of early blast reduction on the remission status after induction. Leukemia 2009;23:528534.
  • 66
    Björklund E, Matinlauri I, Tierens A, Axelsson S, Forestier E, Jacobsson S, Ahlberg AJ, Kauric G, Mäntymaa P, Osnes L, et al. Quality control of flow cytometry data analysis for evaluation of minimal residual disease in bone marrow from acute leukemia patients during treatment. J Pediatr Hematol Oncol 2009;31:406415.
  • 67
    Irving J, Jesson J, Virgo P, Case M, Minto L, Eyre L, Noel N, Johansson U, Macey M, Knotts L, et al; UKALL Flow MRD Group; UK MRD steering Group. Establishment and validation of a standard protocol for the detection of minimal residual disease in B lineage childhood acute lymphoblastic leukemia by flow cytometry in a multi-center setting. Haematologica 2009;94:870874.
  • 68
    Pierzchalski A, Mittag A, Tárnok A. Methods in cell biology, Introduction A: Recent advances in cytometry instrumentation, probes, and methods—Review. Methods Cell Biol 2011;102:121.
  • 69
    van Dongen JJ, Lhermitte L, Böttcher S, Almeida J, van der Velden VH, Flores-Montero J, Rawstron A, Asnafi V, Lécrevisse Q, Lucio P, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012;26:19081975.
  • 70
    van Dongen JJ and Wolvers-Tettero IL. Analysis of immunoglobulin and T cell receptor genes. II. Possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta 1991;198:93174.
  • 71
    Beishuizen A, de Bruijn MA, Pongers-Willemse MJ, Verhoeven MA, van Wering ER, Hählen K, Breit TM, de Bruin-Versteeg S, Hooijkaas H, van Dongen JJ. Heterogeneity in junctional regions of immunoglobulin kappa deleting element rearrangements in B cell leukemias: A new molecular target for detection of minimal residual disease. Leukemia 1997;11:22002207.
  • 72
    van der Velden VH, Szczepanski T, Wijkhuijs JM, Hart PG, Hoogeveen PG, Hop WC, van Wering ER, van Dongen JJ. Age-related patterns of immunoglobulin and T-cell receptor gene rearrangements in precursor-B-ALL: Implications for detection of minimal residual disease. Leukemia 2003;17:18341844.
  • 73
    Wu D, Sherwood A, Fromm JR, Winter SS, Dunsmore KP, Loh ML, Greisman HA, Sabath DE, Wood BL, Robins H. High-throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Sci Transl Med 2012;4:134ra63.
  • 74
    Willemse MJ, Seriu T, Hettinger K, d'Aniello E, Hop WC, Panzer-Grümayer ER, Biondi A, Schrappe M, Kamps WA, Masera G, et al. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood 2002;99:43864393.
  • 75
    Schrappe M, Valsecchi MG, Bartram CR, Schrauder A, Panzer-Grümayer R, Möricke A, Parasole R, Zimmermann M, Dworzak M, Buldini B, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: Results of the AIEOP-BFM-ALL 2000 study. Blood 2011;118:20772084.
  • 76
    Van der Velden VH, Corral L, Valsecchi MG, Jansen MW, De Lorenzo P, Cazzaniga G, Panzer-Grümayer ER, Schrappe M, Schrauder A, Meyer C, et al; Interfant-99 Study Group. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia 2009;23:10731079.
  • 77
    Mussolin L, Pillon M, Bonato P, Leszl A, Franceschetto G, Di Meglio A, d'Amore ES, Sainati L, Rosolen A. Cytogenetic analysis of pediatric anaplastic large cell lymphoma. Pediatr Blood Cancer 2010;55:446451.
  • 78
    Attarbaschi A, Mann G, Panzer-Grümayer R, Röttgers S, Steiner M, König M, Csinady E, Dworzak MN, Seidel M, Janousek D, et al. Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intrachromosomal amplification of chromosome 21: The Austrian and German acute lymphoblastic leukemia Berlin-Frankfurt-Munster (ALL-BFM) trials. J Clinical Oncol 2008;26:30463050.
  • 79
    Faham M, Zheng J, Moorhead M, Carlton VE, Stow P, Coustan-Smith E, Pui CH, Campana D. Deep sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood 2012;120:51735180.
  • 80
    Wassmann B, Pfeifer H, Stadler M, Bornhaüser M, Bug G, Scheuring UJ, Brück P, Stelljes M, Schwerdtfeger R, Basara N, et al. Early molecular response to posttransplantation imatinib determines outcome in MRD+ Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood 2005;106:458463.
  • 81
    Pane F, Cimino G, Izzo B, Camera A, Vitale A, Quintarelli C, Picardi M, Specchia G, Mancini M, Cuneo A, et al; GIMEMA group. (2005) Significant reduction of the hybrid BCR/ABL transcripts after induction and consolidation therapy is a powerful predictor of treatment response in adult Philadelphia-positive acute lymphoblastic leukemia. Leukemia 2005;19:628635.
  • 82
    Coustan-Smith E, Behm FG, Sanchez J, Boyett JM, Hancock ML, Raimondi SC, Rubnitz JE, Rivera GK, Sandlund JT, Pui CH, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998;351:550554.
  • 83
    Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC, Sandlund JT, Rivera GK, Rubnitz JE, Ribeiro RC, et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000;96:26912696.
  • 84
    Zhou J, Goldwasser MA, Li A, Dahlberg SE, Neuberg D, Wang H, Dalton V, McBride KD, Sallan SE, Silverman LB, et al; Dana-Farber Cancer Institute ALL Consortium. Quantitative analysis of minimal residual disease predicts relapse in children with B-lineage acute lymphoblastic leukemia in DFCI ALL Consortium Protocol 95-01. Blood 2007;110:16071611.
  • 85
    Sutton R, Venn NC, Tolisano J, Bahar AY, Giles JE, Ashton LJ, Teague L, Rigutto G, Waters K, Marshall GM, et al; Australian and New Zealand Children's Oncology Group. Clinical significance of minimal residual disease at day 15 and at the end of therapy in childhood acute lymphoblastic leukaemia. Br J Haematol 2009;146:292299.
  • 86
    Stow P, Key L, Chen X, Pan Q, Neale GA, Coustan-Smith E, Mullighan CG, Zhou Y, Pui CH, Campana D. Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood 2010;115:46574663.
  • 87
    Yamaji K, Okamoto T, Yokota S, Watanabe A, Horikoshi Y, Asami K, Kikuta A, Hyakuna N, Saikawa Y, Ueyama J, et al; Japanese Childhood Cancer Leukemia Study Group. Minimal residual disease-based augmented therapy in childhood acute lymphoblastic leukemia: A report from the Japanese Childhood Cancer and Leukemia Study Group. Pediatr Blood Cancer 2010;55:12871295.
  • 88
    Katsibardi K, Moschovi MA, Braoudaki M, Papadhimitriou SI, Papathanasiou C, Tzortzatou-Stathopoulou F. Sequential monitoring of minimal residual disease in acute lymphoblastic leukemia: 7-year experience in a pediatric hematology/oncology unit. Leuk Lymphoma 2010; 51:846852.
  • 89
    Meleshko AN, Savva NN, Fedasenka UU, Romancova AS, Krasko OV, Eckert C, von Stackelberg A, Aleinikova OV. Prognostic value of MRD-dynamics in childhood acute lymphoblastic leukemia treated according to the MB-2002/2008 protocols. Leuk Res 2011;35:13121320.
  • 90
    Coustan-Smith E, Gajjar A, Hijiya N, Razzouk BI, Ribeiro RC, Rivera GK, Rubnitz JE, Sandlund JT, Andreansky M, Hancock ML, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia 2004;18:499504.
  • 91
    Paganin M, Zecca M, Fabbri G, Polato K, Biondi A, Rizzari C, Locatelli F, Basso G. Minimal residual disease is an important predictive factor of outcome in children with relapsed 'high-risk' acute lymphoblastic leukemia. Leukemia 2008;22:21932200.
  • 92
    Raetz EA, Borowitz MJ, Devidas M, Linda SB, Hunger SP, Winick NJ, Camitta BM, Gaynon PS, Carroll WL. Reinduction platform for children with first marrow relapse in acute lymphoblastic lymphoma. J Clin Oncol 2008;26:39713978.
  • 93
    Krejci O, van der Velden VH, Bader P, Kreyenberg H, Goulden N, Hancock J, Schilham MW, Lankester A, Révész T, Klingebiel T, van Dongen JJ. Level of minimal residual disease prior to haematopoietic stem cell transplantation predicts prognosis in paediatric patients with acute lymphoblastic leukaemia: A report of the Pre-BMT MRD Study Group. Bone Marrow Transplant 2003;32:849851.
  • 94
    Bader P, Kreyenberg H, Henze GH, Eckert C, Reising M, Willasch A, Barth A, Borkhardt A, Peters C, Handgretinger R, et al; ALL-REZ BFM Study Group. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: The ALL-REZ BFM Study Group. J Clin Oncol 2009;27:377384.
  • 95
    Leung W, Campana D, Yang J, Pei D, Coustan-Smith E, Gan K, Rubnitz JE, Sandlund JT, Ribeiro RC, Srinivasan A, et al. High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood 2011;118:223230.
  • 96
    Zhao XS, Liu YR, Zhu HH, Xu LP, Liu DH, Liu KY, Huang XJ. Monitoring MRD with flow cytometry: An effective method to predict relapse for ALL patients after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2012;91:183192.
  • 97
    Bowman WP, Larsen EL, Devidas M, Linda SB, Blach L, Carroll AJ, Carroll WL, Pullen DJ, Shuster J, Willman CL, et al. Augmented therapy improves outcome for pediatric high risk acute lymphocytic leukemia: Results of Children's Oncology Group trial P9906. Pediatr Blood Cancer 2011;57:569577.
  • 98
    Panzer-Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2000;95790794.
  • 99
    Neale GA, Coustan-Smith E, Pan Q, Chen X, Gruhn B, Stow P, Behm FG, Pui CH, Campana D. Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 1999;13:12211226.
  • 100
    Neale GA, Coustan-Smith E, Stow P, Pan Q, Chen X, Pui CH, Campana D. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2004;18:934938.
  • 101
    Malec M, van der Velden VH, Björklund E, Wijkhuijs JM, Söderhäll S, Mazur J, Björkholm M, Porwit-MacDonald A. Analysis of minimal residual disease in childhood acute lymphoblastic leukemia: Comparison between RQ-PCR analysis of Ig/TcR gene rearrangements and multicolor flow cytometric immunophenotyping. Leukemia 2004;18:16301636.
  • 102
    Kerst G, Kreyenberg H, Roth C, Well C, Dietz K, Coustan-Smith E, Campana D, Koscielniak E, Niemeyer C, Schlegel PG, et al. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. Br J Haematol 2005;128:774782.
  • 103
    Ryan J, Quinn F, Meunier A, Boublikova L, Crampe M, Tewari P, O'Marcaigh A, Stallings R, Neat M, O'Meara A, et al. Minimal residual disease detection in childhood acute lymphoblastic leukaemia patients at multiple time points reveals high levels of concordance between molecular and immunophenotypic approaches. Br J Haematol 2009;144:107115.
  • 104
    Gaipa G, Cazzaniga G, Valsecchi MG, Panzer-Grümayer R, Buldini B, Silvestri D, Karawajew L, Maglia O, Ratei R, Benetello A, et al. Time point-dependent concordance of flow cytometry and RQ-PCR in minimal residual disease detection in childhood acute lymphoblastic leukemia. Haematologica 2012;97:15821593.
  • 105
    van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, Flohr T, Sutton R, Cave H, Madsen HO, et al; European Study Group on MRD detection in ALL (ESG-MRD-ALL). Analysis of minimal residual disease by Ig/TCR gene rearrangements: Guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007;21:604611.
  • 106
    Steward CG, Goulden NJ, Katz F, Baines D, Martin PG, Langlands K, Potter MN, Chessells JM, Oakhill A. A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood 1994;83:13551362.
  • 107
    Beishuizen A, Verhoeven MA, Van Wering ER, Hahlen K, Hooijkaas H, van Dongen JJ. Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: Implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 1994;83:22382247.
  • 108
    Baruchel A, Cayuela JM, MacIntyre E, Berger R, Sigaux F. Assessment of clonal evolution at Ig/TCR loci in acute lymphoblastic leukaemia by single-strand conformation polymorphism studies and highly resolutive PCR derived methods: Implication for a general strategy of minimal residual disease detection. Br J Haematol 1995;90:8593.
  • 109
    Steenbergen EJ, Verhagen OJ, van den Berg H, van Leeuwen EF, Behrendt H, Slater RR, von dem Borne AE, van der Schoot CE. Rearrangement status of the malignant cell determines type of secondary IgH rearrangement (V-replacement or V to DJ joining) in childhood B precursor acute lymphoblastic leukemia. Leukemia 1997;11:12581265.
  • 110
    Szczepanski T, Willemse MJ, Brinkhof B, Van Wering ER, van der BM, van Dongen JJ. Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 2002;99:23152323.
  • 111
    Li A, Zhou J, Zuckerman D, Rue M, Dalton V, Lyons C, Silverman LB, Sallan SE, Gribben JG. Sequence analysis of clonal immunoglobulin and T-cell receptor gene rearrangements in children with acute lymphoblastic leukemia at diagnosis and at relapse: Implications for pathogenesis and for the clinical utility of PCR-based methods of minimal residual disease detection. Blood 2003;102:45204526.
  • 112
    Dworzak MN, Fritsch G, Fleischer C, Printz D, Fröschl G, Buchinger P, Mann G, Gadner H. Multiparameter phenotype mapping of normal and post-chemotherapy B lymphopoiesis in pediatric bone marrow. Leukemia 1997;11:12661273.
  • 113
    van Wering ER, van der Linden-Schrever BE, Szczepański T, Willemse MJ, Baars EA, van Wijngaarde-Schmitz HM, Kamps WA, van Dongen JJ. Regenerating normal B-cell precursors during and after treatment of acute lymphoblastic leukaemia: Implications for monitoring of minimal residual disease. Br J Haematol 2000;110:139146.
  • 114
    van Wering ER, Beishuizen A, Roeffen ET, van der Linden-Schrever BE, Verhoeven MA, Hählen K, Hooijkaas H, van Dongen JJ. Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia. Leukemia 1995;9:152333.
  • 115
    Borowitz MJ, Pullen DJ, Winick N, Martin PL, Bowman WP, Camitta B. Comparison of diagnostic and relapse flow cytometry phenotypes in childhood acute lymphoblastic leukemia: Implications for residual disease detection: A report from the children's oncology group. Cytometry B Clin Cytom 2005;68B:1824.
  • 116
    Dworzak MN, Gaipa G, Schumich A, Maglia O, Ratei R, Veltroni M, Husak Z, Basso G, Karawajew L, Gadner H, et al. Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: Evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-Study Group. Cytometry B Clin Cytom 2010;78B:147153.
  • 117
    Coustan-Smith E, Sancho J, Hancock ML, Razzouk BI, Ribeiro RC, Rivera GK, Rubnitz JE, Sandlund JT, Pui CH, Campana D. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood 2002;100:23992402.
  • 118
    Thörn I, Forestier E, Botling J, Thuresson B, Wasslavik C, Björklund E, Li A, Lindström-Eriksson E, Malec M, Grönlund E, et al. Minimal residual disease assessment in childhood acute lymphoblastic leukaemia: A Swedish multi-centre study comparing real-time polymerase chain reaction and multicolour flow cytometry. Br J Haematol 2011;152:743753.
  • 119
    Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV, Ancliff P, Morgan M, masurekar A, Goulden N, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukemia (ALL R3): An open-label randomised trial. The Lancet 2010;376:20092017.