Get access

Quinic Acid Derivative KZ-41 Exhibits Radiomitigating Activity in Preclinical Models of Radiation Injury



Preclinical Research

Acute radiation syndrome is induced when a significant portion of the body receives high-dose, as well as high-dose rate, radiation. We have previously identified a quinic acid-based derivative, KZ-41, that protects from radiation injury. Further preclinical efficacy studies were conducted to determine the radiomitigating activity of KZ-41. C57BL/6 mice received total body irradiation (TBI—LD80/30, 137Cs; ∼2 min) followed by either normal saline or KZ-41 (100 mg/kg sc ∼26 h post-TBI). KZ-41 increased 30-day survival by approximately 45% compared with vehicle controls (P < 0.05). To further investigate the potential radiomodulating mechanisms of KZ-41, we developed a combined radiation and vascular injury model. C57BL/6 mice surgically fixed with dorsal windows for dermal vasculature imaging received either sham or TBI (137Cs; 6 Gray). Postcapillary venule injury was induced (24, 48, 72, and 96 h post-TBI) followed by imaging at 5 min and 24 h to assess clot formation and blood flow. Impairment in flow (P < 0.05) and clot formation (P < 0.05) were observed as early as 48 and 72 h, respectively. Thus, vascular injury 72 h post-TBI was used to evaluate intervention (KZ-41; 100 mg/kg i.p. at 12, 36, and 60 h post-TBI) on radiation-induced changes in both flow and clot formation. KZ-41, although not improving flow, increased clot formation (P < 0.05). Platelet counts were lower in both irradiated groups compared with sham controls (P < 0.05). In summary, KZ-41 exerts radiomitigating activity in lethally irradiated mice. Imaging results suggest KZ-41 exerts radiomitigating activity through mechanisms involving promotion of initial clot formation and vascular flow restoration. The imaging model described herein is useful for further examination of radiation-induced vascular injury repair mechanisms.