SEARCH

SEARCH BY CITATION

Keywords:

  • fatty acid oxidation disorders;
  • RAOD;
  • newborn screening

Mitochondrial fatty acid oxidation disorders include conditions in which the transport of activated acyl-Coenzyme A (CoA) into the mitochondria or utilization of these substrates is disrupted or blocked. This results in a deficit in the conversion of fat into energy. Most patients with fatty acid oxidation defects are now identified through newborn screening by tandem mass spectrometry. With earlier identification and preventative treatments, mortality and morbidity rates have improved. However, in the absence of severe health and neurological effects from these disorders, subtle developmental delays or neuropsychological deficits have been noted. Medical records were reviewed to identify outcomes in 85 children with FAOD's diagnosed through newborn screening and followed at one metabolic center. Overall, 54% of these children identified through newborn screening experienced developmental challenges. Speech delay or relative weakness in language was noted in 26 children (31%) and motor delays were noted in 24 children (29%). The majority of the 46 children receiving psychological evaluations performed well within the average range, with only 11% scoring <85 on developmental or intelligence tests. These results highlight the importance of screening children with fatty acid oxidation disorders to identify those with language, motor, or cognitive delay. Although expanded newborn screening dramatically changes the health and developmental outcomes in many children with fatty acid oxidation disorders, it also complicates the interpretation of biochemical and molecular findings and raises questions about the effectiveness or necessity of treatment in a large number of cases. Only by systematically evaluating developmental and neuropsychological outcomes using standardized methods will the true implications of newborn screening, laboratory results, and treatments for neurocognitive outcome in these disorders become clear. © 2013 Wiley Periodicals, Inc. Dev Disabil Res Rev 2013;17:260–268.