• 1
    Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine (3rd edn). Clarendon Press: Oxford, UK, 1998.
  • 2
    Southorn PA. Free radicals in medicine. II: Involvement in human disease. Mayo Clin Proc 1988; 63: 390408.
  • 3
    Halliwell B, Cross CE, Gutteridge JMC. Free radicals, antioxidants and human disease: Where are we now? J Lab Clin Med 1992; 119: 598620.
  • 4
    SiesH (ed.). Oxidative Stress: Oxidants and Antioxidants. Academic Press: New York, NY, 1991.
  • 5
    SiesH (ed.). Antioxidants in Disease Mechanisms and Therapy. Academic Press: San Diego, CA, 1997.
  • 6
    Bendich A. Antioxidant nutrients and immune functions: introduction. Adv Exp Med Biol 1990; 262: 112.
  • 7
    Halliwell B. Antioxidants in human health and disease. Ann Rev Nutr 1996; 16: 3350.
  • 8
    Tesfamariam B. Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med 1994; 16: 383391.
  • 9
    Jones AF, Winkles JW, Jennings PE. Serum antioxidant activity in diabetes mellitus. Diabetes Res 1988; 7: 8992.
  • 10
    Tilton RG, Kawamura T, Chang KC, et al. Vascular dysfunction induced by elevated glucose levels in rats is mediated by vascular endothelial growth factor. J Clin Invest 1997; 99: 21922202.
  • 11
    Cohen RA. Dysfunction of vascular endothelium in diabetes meliitus. Circulation 1993; 87 (Suppl. V): V67V76.
  • 12
    Pieper GM, Gross GJ. Oxygen free radicals abolish endothelium dependent relaxation in diabetic art aorta. Am J Physiol 1998; 255: H825H833.
  • 13
    Lyons T. Oxidised low density lipoproteins: a role in the pathogenesis of atherosclerosis in diabetes? Diabetes Med 1991; 8: 411419.
  • 14
    Halliwell B. Antioxidant characterization; methodology and mechanism. Biochem Pharmacol 1995; 49: 13411348.
  • 15
    Packer L, Tritschler H. α-Lipoic acid – a metabolic antioxidant. Free Radic Res Commun 1996; 20: 625626.
  • 16
    Scott BC, Aruoma OI, Evans PJ, et al. Lipoic and dihydrolipoic acid as antioxidants. A critical evaluation. Free Radic Res Commun 1994; 20: 119133.
  • 17
    Stahl W, Sies H. Antioxidant defense: vitamins E and C and carotenoids. Diabetes 1997; 46 (Suppl. V): 1418.
  • 18
    Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner DDM. The antioxidant role of vitamin C. Free Radic Biol Med 1986; 2: 419444.
  • 19
    Traber MG, Sies H. Vitamin E in humans: demand and delivery. Annu Rev Nutr 1996; 16: 321347.
  • 20
    Niki E. Antioxidants in relation to lipid peroxidation. Chem Phys Lipids 1987; 44: 227253.
  • 21
    Packer L. New horizons in vitamin E research – the vitamin Ecycle, biochemistry and clinical applications. In Lipid Soluble Antioxidants: Biochemistry and Clinical Applications, OngASH, PackerL (eds). Birkhauser Verlag: Boston, MA, 1992; 116.
  • 22
    Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as abiological antioxidant. Free Radic Biol Med 1995; 19: 227250.
  • 23
    Han D, Handelman G, Marcocci L, et al. Lipoic acid increases de novo synthesis of cellular glutathione by improving cystinie utilization. Biofactors 1997; 9: 118.
  • 24
    Sies H. Strategies of antioxidant defense. Eur J Biochem 1993; 215: 213219.
  • 25
    Cross CE, Halliwell B, Borish ET, et al. Oxygen radicals and human disease. Ann Intern Med 1987; 107: 526545.
  • 26
    Dizdaroglu M. Chemistry of free radical damage to DNA andnucleoproteins. In DNA and Free Radicals, HalliwellB, AruomaOI (eds). Ellis Horwood: Chichester, UK, 1993; 1939.
  • 27
    Spencer JPE, Wong J, Jenner A, Aruoma OI, Cross CE, Halliwell B. Base modification and strand breakage in isolated calf thymus DNA and in DNA from human skin epidermal keratinocytes exposed to peroxynitrite or 3-morpholinosydnonimine. Chem Res Tox 1996; 9: 11521158.
  • 28
    Whiteman M, Jenner A, Halliwell B. Hypochlorous acid-induced base modification in isolated calf thymus DNA. Chem Res Tox 1997; 10: 12401246.
  • 29
    Loft S, Fischer-Nielsen A, Jeding IB. 8-Hydroxydeoxyguanosine as a urinary marker of oxidative DNA damage. J Toxicol Environ Health 1993; 40: 391404.
  • 30
    Steinberg D, Parthasarathy S, Carew TE. Beyond cholesterol. Modifications of low-density lipoprotein that increases its atherogenicity. New Engl J Med 1989; 320: 915924.
  • 31
    Heinecke JW. Mechanisms of oxidative damage of low density lipoprotein in arteriosclerosis. Curr Opin Lipidol 1997; 8: 268274.
  • 32
    Esterbauer H, Gebicki J, Puhl H, Jurgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 1992; 13: 341390.
  • 33
    Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement and significance. Am J Clin Nutr 1993; 57: 715S725S.
  • 34
    Chirico S, Smith C, Marchant C. Lipid peroxidation in hyperlipidaemic patients. A study of plasma using an HPLC-based thiobarbituric acid test. Free Radic Res Commun 1993; 19: 5157.
  • 35
    Akasaka K, Ohata A, Ohrui H, Meguro H. Automatic determination of hydroperoxides of phosphatidylcholine and phosphatidylethanolamine in human plasma. J Chromatogr 1995; B665: 3743.
  • 36
    Frei B, Yamamoto Y, Niclas D, Ames BN. Evaluation of an isoluminol chemiluminescence assay for the detection of hydroperoxides in human blood plasma. Anal Biochem 1988; 175: 120130.
  • 37
    Holley AE, Slater TF. Measurement of lipid hydroperoxides in normal human blood plasma using HPLC-chemiluminescence linked to a diode array detector for measuring conjugated dienes. Free Radic Res Commun 1991; 15: 5163.
  • 38
    Wilson R, Smith R, Wilson P, Shepherd MJ, Riemersma RA. Quantitative gas chromatography-mass spectrometry isomer-specific measurement of hydroxy fatty acids in biological samples and food as a marker of lipid peroxidation. Anal Biochem 1997; 248: 7685.
  • 39
    Yasuda M, Narita S. Simultaneous determination of phospholipid hydroperoxides and cholesteryl ester hydroperoxides in human plasma by high-performance liquid chromatography with chemiluminescene detection. J Chromatogr 1997; 693: 211217.
  • 40
    Pratico D, Lawson JA, Fitzgerald GA. Cyclooxygenase-dependent formation of the isoprostane, 8-epiprostaglandin F. J Biol Chem 1995; 270: 98009808.
  • 41
    Wang Z, Ciabattoni G, Creminon C. Immunological characterization of urinary 8-epiprostaglandin F excretion in man. J Pharmacol Exp Ther 1995; 275: 94100.
  • 42
    Nourooz-Zadeh J, Gopaul NK, Barrow S. Analysis of F2-isoprostanes as indicators of non-enzymatic lipid peroxidation in vivo by gas chromatography-mass spectrometry: development of a solid-phase extraction procedure. J Chromatogr 1995; B667: 199208.
  • 43
    Morrow JD, Frei B, Longmire AW. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. New Engl J Med 1995; 332: 11981203.
  • 44
    Gopaul NK, Nourooz-Zadeh J, Mallet AI, Anggard EE. Formation of F2-isoprostanes during aortic endothelial cell-mediated oxidation of low density lipoprotein. FEBS Lett 1994; 348: 297300.
  • 45
    Aruoma OI, Halliwell B, Butler J, Hoey BM. Apparent inactivation of α1-antiproteinase by sulphur-containing radicals derived from penicillamine. Biochem Pharmacol 1989; 38: 43534357.
  • 46
    Beckman JS, Chen J, Ischiropoulos H, Crow JP. Oxidative chemistry of peroxynitrite. Meth Enzymol 1994; 233: 229240.
  • 47
    Halliwell B. What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitite formation in vivo? FEBS Lett 1997; 411: 157160.
  • 48
    Davis MJ, Dean RT. Radical-mediated protein oxidation. From chemistry to medicine. Oxford University Press: Oxford, UK, 1997.
  • 49
    Levine RL, Garland D, Oliver CN, et al. Determination of carbonyl content in oxidatively modified protein. Meth Enzymol 1990; 186: 464487.
  • 50
    Amici A, Levine RL, Tsai L, Stadtman ER. Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivates by metal-catalyzed oxidation reactions. J Biol Chem 1989; 264: 33413346.
  • 51
    Dandona P, Thusu K, Cook S, et al. Oxidative damage to DNA in diabetes mellitus. Lancet 1996; 347: 444445.
  • 52
    Leinonen J, Lehtimäki T, Toyokuni S, et al. New biomarker evidence of oxidative DNA damage in patients with non-insulin-dependent diabetes mellitus. FEBS Lett 1997; 417: 150152.
  • 53
    Griesbacher A, Kinderhauser M, Andert S. Enhanced serum levels of TBARS in diabetes mellitus. Am J Med 1995; 98: 469475.
  • 54
    Sundaram RK, Bhaskar A, Vijayalingam S, Viswanatthan M, Mohan R, Shanmugasundaram KR. Antioxidant status and lipid peroxidation in type II diabetes with and without complications. Clin Sci 1996; 90: 255260.
  • 55
    Velazques E, Winocour PH, Kesteven P, Alberti KGMM, Laker MF. Relation of lipid peroxides to macrovascular disease in type 2 diabetes. Diabet Med 1991; 8: 752758.
  • 56
    McRury SM, Gordon D, Wilson R, et al. A comparison of different methods of assessing free radical activity in type 2 diabetes and peripheral vascular disease. Diabet Med 1993; 10: 331335.
  • 57
    Nishigaki I, Hagihara M, Tsunekawa H, Maseki M, Yaki K. Lipid peroxide levels of serum lipoprotein fractions of diabetic patients. Biochem Med 1981; 25: 373378.
  • 58
    Altomare E, Vendemiale G, Chicco D, Procacci V, Cirelli F. Increased lipid peroxidation in type 2 poorly controlled diabetic patients. Diabetes Metab 1992; 18: 264271.
  • 59
    Jennings PE, Jones AF, Florkowski CM, Lunec J, Barnett AH. Increased diene conjugates in diabetic subjects with microangiopathy. Diabet Med 1987; 4: 452456.
  • 60
    Haffner SM, Agil A, Mykkanen L, Stern M, Jialal I. Plasma oxidisability in subjects with normal glucose tolerance, impaired glucose tolerance and NIDDM. Diabetes Care 1995; 18: 646653.
  • 61
    Gopaul NK, Anggard EE, Mallet AI, Betteridge DJ, Wolff SP, Nourooz-Zadeh J. Plasma 8-epi PGF levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett 1995; 368: 225229.
  • 62
    Nourooz-Zadeh J, Tajaddini-Sarmadi J, McCarthy S, Betteridge DJ, Wolff SP. Elevated levels of authentic plasma hydroperoxides in NIDDM. Diabetes 1995; 44: 10541058.
  • 63
    Nourooz-Zadeh J, Rahimi A, Tajaddini-Sarmadi J, et al. Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia 1997; 40: 647653.
  • 64
    Davi G, Ciaboattoni G, Consoli A, et al. In vivo formation of 8-iso-prostaglandin F and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 1999; 99: 224229.
  • 65
    Bellomo G, Maggi E, Poli M, Agosta FG, Bollati P, Finardi G. Autoantibodies against oxidatively modified low-density lipoproteins in NIDDM. Diabetes 1995; 44: 6066.
  • 66
    Bellomo G, Maggi E, Palladini G, Perugini C, Seccia M. Oxidation of low density lipoproteins and vitamin E status in non insulin dependent diabetes mellitus (NIDDM). Diabetes und Stoffwechsel 1997; 6 (Suppl. 2): 2933.
  • 67
    Cominacini L, Garbin U, Pastorino AM, et al. Increased susceptibility of LDL to in vitro oxidation in patients with insulin dependent diabetes mellitus. Diabetes Res 1994; 26: 173184.
  • 68
    Reaven PD, Herold DA, Barnett J, Edelman S. Effects on vitamin E on susceptibility of low-density lipoprotein subfractions to oxidation and protein glycation in NIDDM. Diabetes Care 1995; 18: 807816.
  • 69
    Babiy AV, Gebicki JM, Sullivan DR, Willey K. Increased oxidizability of plasma lipoproteins in diabetic patients can be decreased by probucol therapy and is not due to glycation. Biochem Pharmacol 1992; 43: 9951000.
  • 70
    Bowie A, Owens D, Collins P, Johnson A, Tomkin GH. Glycosylated low-density protein is more sensitive to oxidation: implications for the diabetic patients. Arteriosclerosis 1993; 102: 6367.
  • 71
    Dimitriadis E, Griffin M, Owens D, Johnson A, Collin P, Tomkin GH. Oxidation of low-density lipoprotein in NIDDM: its relationship to fatty acid composition. Diabetologia 1995; 38: 13001306.
  • 72
    Beaudeux JL, Guillausseau PJ, Peynet J, et al. Enhanced susceptibility of low-density lipoprotein to in vitro oxidation in type 1 and type 2 diabetic patients. Clin Chim Acta 1995; 239: 131141.
  • 73
    Rabini RA, Fumelli P, Galassi R, et al. Increased susceptibility to lipid oxidation of low-density lipoproteins and erythrocyte membranes from diabetic patients. Metab Clin Exp 1994; 43: 14701474.
  • 74
    Leonhardt W, Hahnefeld M, Lattke P, Jaroβ W. Vitamin E Mangel und Oxidierbarkeit der Low-Density-Lipoproteine beiTyp-I- und Typ-II-Diabetes: Einfluβ der Qualität der Stoffwechselkontrolle. Diabetes und Stoffwechsel 1997; 6 (Suppl. 2): 2429.
  • 75
    Leonhardt W, Hahnefeld M, Müller G, et al. Impact of concentrations of glycated hemoglobin, alpha-tocopherol, copper, and manganese on oxidation of low-density lipoproteins in patients with type I diabetes, type II diabetes and control subjects. Clin Chim Acta 1996; 254: 173186.
  • 76
    Tsai EC, Hirsch IB, Brunzell JD, Chait A. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes 1994; 43: 10101014.
  • 77
    Chari SN, Nath N, Rathi AB. Glutathione and its redox system in diabetic polymorphonuclear leukocytes. Am J Med Sci 1984; 287: 1415.
  • 78
    Jennings PE, Chirico S, Jones AF, Lunec J, Barnett AH. Vitamin C metabolites and microangiopathy in diabetes mellitus. Diabetes Res 1987; 6: 151154.
  • 79
    Karpen CW, Cataland S, O'Dorisio TM, Panganamala RV. Production of 12 HETES and vitamin E status in platelets from type 1 human diabetic subjects. Diabetes 1985; 34: 526531.
  • 80
    Paolisso G, D'Amore A, Balbi V, et al. Plasma vitamin C affects glucose homeostasis in healthy subjects and in non-insulin-dependent diabetics. Am J Physiol 1994; 266: E261E268.
  • 81
    Olmedilla B, Granado F, Gilmartinez E, Blanco I, Rojashidalgo E. Reference values for retinol, tocopherol and main carotenoids in serum of control and insulin dependent diabetic Spanish subjects. Clin Chem 1997; 43: 10661071.
  • 82
    Maxwell SRJ, Thomason H, Sandler D, et al. Antioxidant status in patients with uncomplicated insulin-dependent and non insulin-dependent diabetes mellitus. Eur J Clin Invest 1997; 27: 484490.
  • 83
    Dyer RG, Stewart MW, Mitcheson J, George K, Alberti MM, Laker MF. 7-Ketocholesterol, a specific indicator of lipoprotein oxidation, and malondialdehyde in non-insulin dependent diabetes and peripheral vascular disease. Clin Chim Acta 1997; 260: 113.
  • 84
    Sinclair AJ, Girling AJ, Gray L, LeGuen C, Lunec J, Barnett AH. Disturbed handling of ascorbic acid in diabetic patients with and without microagiopathy during high dose ascorbate supplementation. Diabetologia 1997; 34: 171175.
  • 85
    Srinivasan KN, Pugalendi KV, Sambandam G, Rao MR, Menon PV. Diabetes mellitus, lipid peroxidation and antioxidant status in rural patients. Clin Chim Acta 1997; 259: 183186.
  • 86
    Salonen JT, Nyyssonen K, Tuomainen TP, et al. Increased risk of non-insulin dependent diabetes mellitus at low plasma vitamin E concentrations: a four year follow up study in men. Br Med J 1995; 311: 11241127.
  • 87
    Thornalley P, McLean AC, Lo TW, Benn J, Sonksen PH. Negative association between erythrocytes, reduced glutathione concentration and diabetic complications. Clin Sci (Colch) 1996; 91: 572582.
  • 88
    Simon-Schnaβ I, Rosak Ch, Tritschler H-J, Rösen P. Alpha-Tocopherolaufnahme und -zufuhr bei Typ-II-Diabetikern. Diabetes und Stoffwechsel 1997; 6 (Suppl. 2): 1620.
  • 89
    Rösen P, Toeller M. Vitamin E in diabetes: increased oxidative stress and its prevention as a strategy to prevent vascular complications? Int Vit Nutr Res 1999; 69: 206213.
  • 90
    Fuller CJ, Chandalia M, Garg A, Grundy SM, Jialal I. RRR-alpha-tocopheryl acetate supplementation at pharmacologic doses decreases low-density-lipoprotein oxidative susceptibility but not protein glycation in patients with diabetes mellitus. Am J Clin Nutr 1996; 63: 753759.
  • 91
    Borcea V, Nourooz-Zadeh J, Wolff SP, et al. Alpha-lipoic acid decreases oxidative stress in diabetic patients with poor glycemic control and albuminuria. Free Radic Biol Med 1999; 26: 14951500.
  • 92
    Li D, Devaraj S, Fuller C, Bucala R, Jialal I. Effect of alpha tocopherol on LDL oxidation and glycation: in vitro and in vivo studies. J Lipid Res 1996; 37: 19781986.
  • 93
    Du XL, Stockklauser-Färber K, Rösen P. Generation of reactive oxygen intermediates, activation of NFkappaB, and induction of apoptosis in human endothelial cells by glucose: role of nitric oxide synthase? Free Radic Med Biol 1999; 27: 752763.
  • 94
    Graier WF, Simecek S, Kukovetz WR, Kostner GM. High glucose-induced changes in endothelial Ca2+/EDRF signaling are due to generation of superoxide anions. Diabetes 1996; 45: 13861395.
  • 95
    Wascher TC, Toplak H, Krejs GJ, Simecek S, Kukovetz WR, Graier WF. Intracellular mechanisms involved in D-glucose-mediated amplification of agonist-induced Ca2+ response and EDRF formation in vascular endothelial cells. Diabetes 1994; 43: 984991.
  • 96
    Giardino I, Fard AK, Hatchell DL, Brownlee M. Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes 1998; 47: 11141120.
  • 97
    Rösen P, Du XL, Tschöpe D. Role of oxygen derived radicals forvascular dysfunction in the diabetic heart: prevention by α-tocopherol? Mol Cell Biochem 1998; 188: 103111.
  • 98
    Diedrich D, Skopec J, Diedrich A, Dai FX. Endothelial dysfunction in mesenteric resistance arteries of diabetic rats: role of free radicals. Am J Physiol 1994; 266: H1153H1161.
  • 99
    Tesfamariam B, Brown ML, Deykin D, Cohen RA. Elevated glucose promotes generation of endothelium-dependent vasoconstrictive prostanoids in rabbit aorta. J Clin Invest 1990; 85: 929932.
  • 100
    Mullarkey C, Edelstein D, Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated arteriogenesis in diabetes. Biochem Biophys Res Commun 1990; 173: 932939.
  • 101
    Sakurai T, Tsuchiya S. Superoxide production from nonenzymatically glycated protein. FEBS Lett 1998; 236: 406410.
  • 102
    Schmidt A-M, Zhang JH, Crandall J, et al. Interaction of advanced glycation end products with their endothelial cell receptor leads to enhanced expression of VCAM-1: a mechanism for augmented monocyte-vessel wall interactions in diabetes. FASEB J 1994; 8 (Part II): 3841.
  • 103
    Schmidt A-M, Hori O, Brett J, Yan SD, Wautier JL, Stern D. Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Throm 1994; 14: 15211528.
  • 104
    Wolff SP. Diabetes mellitus and free radicals. Br Med Bull 1993; 49: 642652.
  • 105
    Wolff SP, Jiang ZY, Hundt JV. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med 1991; 10: 339352.
  • 106
    Kashiwagi A, Asahina T, Ikebuchi M, et al. Abnormal glutathione metabolism and increased cytotoxicity caused by H202 in human umbilical vein endothelial cells cultured in high glucose medium. Diabetologia 1994; 37: 264269.
  • 107
    Ceriello A. Acute hyperglycaemia and oxidative stress generation. Diabet Med 1997; 14 (Suppl. 3): S45S49.
  • 108
    Rösen P, Ballhausen T, Bloch W, Addicks K. Endothelial relaxation is disturbed by oxidative stress in the diabetic heart: the influence of tocopherol as antioxidant. Diabetologia 1995; 38: 11571168.
  • 109
    Suzuki D, Miyata T, Saotome N, et al. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. J Am Soc Nephrol 1999; 10: 822832.
  • 110
    Giugliano D, Ceriello A. Oxidative stress and diabetic vascular complicatons. Diabetes Care 1996; 19: 257267.
  • 111
    Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40: 405411.
  • 112
    Ahmed MU, Thorpe Sr, Baynes JW. Identification of carboxymethyllysine as a degradation product of fructose-lysine in glycosylated protein. J Biol Chem 1986; 261: 48894994.
  • 113
    Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Torpe SR, Baynes JW. Glycation, glycoxydation, and crosslinking of collagen by glucose. Kinetics, mechanisms and inhibition of late stages of the Maillard reaction. Diabetes 1994; 43: 676683.
  • 114
    Ahmed MU, Dunn JA, Walla MD, Thorpe SR, Baynes JW. Oxidative degeneration of glucose adducts to protein formation of 3-(Nε-lysino)-lactic acid from model compounds and glycated proteins. J Biol Chem 1988; 263: 88168821.
  • 115
    Pirat J. Diabetes mellitus and its degenerative complications: a prospective study of 4400 patients observed between 1947 and 1973. Diabetes Care 1978; 1: 168188.
  • 116
    Dyck PJ, Kratz KM, Karnes JL, et al. The prevalence by stagedseverity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population based cohort: the Rochester Diabetic Neuropathy Study. Neurology 1993; 43: 817824.
  • 117
    The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977986.
  • 118
    The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Intern Med 1995; 122: 561568.
  • 119
    The UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulponylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837853.
  • 120
    Greene DA, Lattimer SA, Sima AAF. Pathogenesis and prevention of diabetic neuropathy. Diabetes Metab Rev 1988; 4: 201221.
  • 121
    Greene DA, Sima AAF, Alberts JW, Pfeifer MA. Diabetic neuropathy. In Diabetes Mellitus Theory and Practice (4th edn), RifkinH, PorteD (eds). Elsevier: New York, NY, 1990.
  • 122
    Stevens MJ, Lattimer SA, Kamijo M, Van Huysen C, Sima AAF, Greene DA. Osmotically induced nerve taurine depletion and the compatible osmolyte hypothesis in experimental diabetic neuropathy. Diabetologia 1993; 36: 608614.
  • 123
    Greene DA, Lattimer SA, Sima AAF. Sorbitol, phosphoinositols and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med 1987; 316: 599606.
  • 124
    Cameron NE, Cotter MA. Neurovascular dysfunction in diabetic rats: potential contribution of autooxidation and free radicals examined using transition metal chelating agents. J Clin Invest 1995; 96: 11591163.
  • 125
    Cameron NE, Cotter MA. Metabolic and vascular factors in thepathogenesis of diabetic neuropathy. Diabetes 1997; 46 (Suppl. 2): 3137.
  • 126
    Low PA, Nickander KK, Tritschler HJ. The roles of oxidative stress and antioxidant treatment in experimental diabetic polyneuropathy. Diabetes 1997; 46 (Suppl. 2): 3842.
  • 127
    Low PA, Lagerlund TD, McManis PG. Nerve blood flow and oxygen delivery in normal, diabetic, and ischemic neuropathy. Int Rev Neurobiol 1989; 31: 355438.
  • 128
    Low PA, Nickander KK. Oxygen free radical effects in sciatic nerve in experimental diabetes. Diabetes 1991; 40: 873877.
  • 129
    Kihara M, Low PA. Impaired vasoreactivity to nitic oxide in experimental diabetic neuropathy. Exp Neurol 1995; 132: 180185.
  • 130
    Cameron NE, Cotter MA, Low PA. Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits. Am J Physiol 1991; 261: E1E8.
  • 131
    Malik RA, Masson EA, Sharma AK, et al. Hypoxic neuropathy relevance to human diabetic neuropathy. Diabetologia 1990; 33: 311318.
  • 132
    Sasaki H, Low PA. Neuropathology and blood flow of nerve, spinal roots and dorsal root ganglia in long-standing diabetic rats. Acta Neuropathol 1997; 93: 118127.
  • 133
    Cameron NE, Cotter MA, Archibald V, Dines KC, Maxfield EK. Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and diabetic rats. Diabetologia 1994; 37: 449459.
  • 134
    Karasu C, Dewhurst M, Stevens EJ, Tomlinson DR. Effects of anti-oxidant treatment on sciatic nerve dysfunction in streptozotocin-induced diabetic rats. Comparison with essential fatty acids. Diabetologia 1995; 38: 129134.
  • 135
    Cameron NE, Cotter MA, Horrobin DH, Tritschler HJ. Effects of α-lipoic acid on neurovascular function in diabetic rats: interaction with essential fatty acids. Diabetologia 1998; 41: 390399.
  • 136
    Nagamatsu M, Nickander KK, Schmelzer JD, et al. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care 1996; 18: 11601167.
  • 137
    Nickander KK, McPhee BR, Low PA, Tritschler HJ. Alpha-lipoic acid: antioxidant potency against lipid peroxydation of neural tissues in vitro, and implications for diabetic neuropathy. Free Radic Biol Med 1996; 21: 631639.
  • 138
    Tomlinson DR, Fernyhough P, Diemel LT. Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors. Diabetes 1997; 46 (Suppl. 2): 4349.
  • 139
    Vinik AI, Newlon PG, Lauterio TJ, et al. Nerve survival and regeneration in diabetes. Diabetes Rev 1995; 3: 139157.
  • 140
    Hellweg R, Hartung H-D. Endogenous levels of nerve growth factor (NGF) are altered in experimental diabetes mellitus: a possible role for NGF in the pathogenesis of diabetic neuropathy. J Neurosci Res 1990; 26: 258267.
  • 141
    Faradji V, Sotelo J. Low serum level of nerve growth factor in diabetic neuropathy. Acta Neurol Scand 1990; 81: 402406.
  • 142
    Garrett NE, Malcangio M, Dewhurst M, Tomlinson DR. α-Lipoic acid corrects neuropeptide deficits in diabetic rats via induction of trophic support. Neurosci Lett 1997; 222: 191197.
  • 143
    Sachse G, Willms B. Efficacy of thioctic acid in the therapy of peripheral diabetic polyneuropathy: In Aspects of Autonomic Neuropathy in Diabetes, GriesFA, FreundHJ, RabeF, BergerH (eds), Hormone Metabolism Research Supplement Series 9, Thieme-Stratton: New York, NY, 1980; 105108.
  • 144
    Delcker A, Fischer P-A, Ulrich H. Randomisierte Studie Thioctsäure gegenüber Vitamin-B-Kombinationspräparat bei Patienten mit diabetischer Polyneuropathie unter besonderer Berücksichtigung des peripheren Neurosystems. In Neue biochemische, pharmakologische und klinische Erkenntnisse zur Thioctsäure BorbeHO, UlrichH (eds). PMI Verlag: Frankfurt, 1989; 335344.
  • 145
    Schulz B, Reichel G, Hüttl I, Zander E, Runge U. Zur Wirksamkeit der Thioctsäuretherapie bei Typ I Diabetikern. Greifswald: Wiss Z Ernst-Moritz-Arndt-Universität Greifswald, Medizinische Reihe 1986; 35: 4850.
  • 146
    Jörg J, Metz F, Scharafinski H. Zur medikamentösen Behandlung der diabetischen Polyneuropathie mit der Alpha-Liponsäure oder Vitamin B-Präparaten. Nervenarzt 1988; 59: 3644.
  • 147
    Ziegler D, Mayer P, Mühlen H, Gries FA. Effekte einer Therapie mit α-Liponsäure gegenüber Vitamin B1 bei der diabetischen Polyneuropathie. Diabetes und Stoffwechsel 1993; 2: 443448.
  • 148
    Reschke B, Zeuzem S, Rosak C, et al. Hochdosierte Langzeittherapie mit Thioctsäure bei der diabetischen Polyneuropathie: Ergebnisse einer kontrollierten randomisierten Studie unter besonderer Berücksich-tigung der autonomen Neuropathie. In Neue biochemische, pharmakologische und klinische Erkenntnisse zur Thioctsäure, BorbeHO, UlrichH (eds). PMI Verlag: Frankfurt, 1989; 318334.
  • 149
    Ziegler D, Hanefeld M, Ruhnau KJ, et al. The ALADIN Study Group: treatment of symptomatic diabetic peripheral neuropathy with the antioxidant α-lipoic acid: a 3-week randomized controlled trial (ALADIN Study). Diabetologia 1995; 38: 14251433.
  • 150
    Reljanovic M, Reichel C, Rett K, et al. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (α-lipoic acid). A two year multicenter randomized double blind placebo controlled trial (ALADIN II). Free Radic Res 1999; 31: 171179.
  • 151
    Ruhnau KJ, Meissner HP, Finn JR, et al. Oral treatment of symptomatic diabetic polyneuropathy with the antioxidant thioctic acid (α-lipoic acid). A-3 week randomized double-blind placebo-controlled trial. Diabet Med 1999; 16: 10401043.
  • 152
    Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant α-lipoic acid. A 7-month multicenter randomized controlled clinical trial (ALADIN III). Diabetes Care 1999; 22: 12961301.
  • 153
    Ziegler D, Conrad F, Ulrich H, Reichel G, Schatz H, Gries FA, the DEKAN Study Group. Effects of treatment with the antioxidant α-lipoic acid on cardiac autonomic neuropathy in NIDDM patients: a 4-month randomized controlled multicenter clinical trial (DEKAN Study). Diabetes Care 1997; 20: 369373.
  • 154
    Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes 1998; 47: 859866.
  • 155
    Warnholtz A, Nickenig G, Schulz E, et al. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 1999; 99: 20272033.
  • 156
    Guzik TJ, West NE, Black E, et al. Vascular superoxide production by NAD(P)H oxidase: association between endothelial dysfunction and clinical risk factors. Circ Res 2000; 86: E85E90.
  • 157
    Rösen P, Du XL, Sui GZ. Oxidative stress in diabetes: why does hyperglycaemia induce the formation of reactive oxygen species? In Antioxidants in Diabetes Management, RösenP, PackerL, TritschlerHJ, AzziA, KingGL (eds). Marcel Dekker Inc: New York, NY, 2000; 1732.
  • 158
    Rösen P, Bartels H, Berkels R, Kirmizugül I, Rösen R. Short term glucose stimulates the generation of reactive oxygen species, but eliminates free nitric oxide. Diabetes 2000; 49 (Suppl. 1): 134135.
  • 159
    Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404: 787790.
  • 160
    Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamone pathway and induces plasminogen activator inhibitor-1 expression by increasing SP1 glycosylation. Proc Natl Acad Sci U S A 2000; 97: 1222212226.
  • 161
    Tilton RG, Kwamura T, Chang KC, et al. Vascular dysfunction induced by elevated glucose levels in rats is mediated by vascular endothelial growth factor. J Clin Invest 1999; 99: 21922202.
  • 162
    Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258: 607614.
  • 163
    Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 1995; 9: 484496.
  • 164
    King GL, Ishii H, Koya D. Diabetic vascular dysfunctions: a model of excessive activation of protein kinase C. Kidney Int 1997; 52: S77S85.
  • 165
    Derubertis FR, Craven PA. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential link to the pathogenesis of diabetic glomerulopathy. Diabetes 1994; 43: 18.
  • 166
    Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL. Preferential elevation of protein kinase C isoform β II and diacylglycerol levels in aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci U S A 1992; 89: 1105911063.
  • 167
    Xia P, Inoguchi T, Kern TS, Engerman RL, Oates PJ, King GL. Characterization of the mechanisms for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes 1994; 43: 11221129.
  • 168
    Kunisaki M, Bursell S-E, Umeda F, Nawata H, King GL. Normalization of diacylglycerol-protein kinase C activation by vitamin E in aorta of diabetic rats and cultured rat smooth muscle cells exposed to elevated glucose levels. Diabetes 1994; 43: 13721377.
  • 169
    Craven PA, Davidson CM, DeRubertis FR. Increase indiacylglycerol mass in isolated glomeruli by glucose fromde novo synthesis of glycerolipids. Diabetes 1990; 39: 667674.
  • 170
    Koya D, Jirousek MR, Lin Y-W, Ishii H, Kuboki K, King GL. Characteristics of protein kinase C β isoform activation on the gene expression of transforming growth factor β, extracellular matrix components and prostanoids in the glomeruli of diabetic rats. J Clin Invest 1997; 100: 115126.
  • 171
    Kikkawa R, Haneda M, Uzu T, Koya D, Sugimoto T, Shigeta Y. Translocation of protein kinase α and ξ in rat glomerular mesangial cells cultured under high glucose conditions. Diabetologia 1994; 37: 838841.
  • 172
    Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC β inhibitor. Science 1996; 272: 728731.
  • 173
    Kunisaki M, Bursell S-E, Clermont AC, et al. Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. Am J Physiol 1995; 269: E239E246.
  • 174
    Boscoboinik D, Szewczyk A, Hensey C, Azzi A. Inhibition of cell proliferation by alpha-tocopherol. Role of protein kinase C. J Biol Chem 1991; 266: 61886194.
  • 175
    Bursell S-E, Takagi C, Clermont AC. Specific retinal DAG and PKC-β isoform modulation mimics abnormal retinal hemodynamics in diabetic rats. Invest Ophthalmol Vis Sci 1997; 38: 27112720.
  • 176
    Shiba T, Inoguchi T, Sportsman JR, Heath W, Bursell S, King GL. Correlation of diacylglycerol and protein kinase C activity in rat retina to retinal circulation. Am J Physiol 1993; 265: E783E793.
  • 177
    Cameron NE, Cotter MA, Lai K, Hohman TC. Effect of protein kinase C inhibition on nerve function, blood flow and Na+K+ ATPase defects in diabetic rats. Diabetes 1997; 46 (Suppl. 1): 31A.
  • 178
    Bursell S-E, Takagi C, Clermont AC. Specific retinal DAG andPKC-β isoform modulation mimics abnormal retinal hemodynamics in diabetic rats. Invest Ophthalmol Vis Sci 1997; 38: 27112720.
  • 179
    King GL, Brownlee M. The celular and molecular mechanisms of diabetic complications. Endocrinol Metab Clin North Am 1996; 25: 255270.
  • 180
    Yermeni KK, Bai W, Kahn BV, Medford RM, Natarajan R. Hyperglycemia induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes 1999; 48: 855864.
  • 181
    Rattan V, Shen Y, Sultana C, Kumar D, Kalra VK. Diabetic RBC-induced oxidant stress leads to transendothelial migration of moncyte-like HL-60 cells. Am J Physiol 1997; 2744: E369E375.
  • 182
    Lash JM, Nase GO, Bohlen HG. Acure hyperglycaemia depresses arteriolar NO formation in skeletal muscle. Am J Physiol 1999; 277: H1513H1520.
  • 183
    Kawano H, Motoyama T, Hirashima O, et al. Hyperglycaemia rapidly suppresses flow-mediated endothelium dependent vasodilation of brachial artery. J Am Coll Cardiol 1999; 34: 146154.
  • 184
    Giugliano D, Marfella R, Coppola L, et al. Vascular effects of acute hyperglycaemia in humans are reversed by L-arginine. Circulation 1997; 95: 17831790.
  • 185
    Ceriello A. Diabetes mellitus and hypertension: the possible role of hyperglycaemia through oxidative stress. Diabetologia 1993; 36: 265266.
  • 186
    Schmidt AM, Yan SD, Stern DM. The dark side of glucose. Nat Med 1995; 1: 10021004.
  • 187
    Wu JT. Advanced glycosylation end products: a new disease marker for diabetes and aging. J Clin Lab Anal 1993; 7: 252255.
  • 188
    Brownlee M, Cerami A, Vlassara H. Advanced glycation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988; 318: 13151321.
  • 189
    Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res 1988; 37: 586600.
  • 190
    Chappey O, Dosquet C, Wautier MP, Wautier JL. Advanced glycation end products, oxidant stress and vascular lesions. Eur J Clin Invest 1997; 27: 97108.
  • 191
    Bierhaus A, Illmer T, Kasper M, et al. Advanced glycation endproducts (AGEs) mediated induction of tissue factor in cultured endothelial cells is dependent on RAGE. Circulation 1996; 96: 22622271.
  • 192
    Esposito C, Gerlach H, Brett J, Stern D, Vlassara H. Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J Exp Med 1989; 170: 13871407.
  • 193
    Vlassara H, Fuh H, Donelly T, Cybulsky M. Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and arteriosclerotic plaque formation in normal rabbits. Mol Med 1995; 1: 447456.
  • 194
    Hori O, Yan SD, Ogawa S. The receptor for advanced glycation endproducts plays a central role in mediating the effects of advanced glycation endproducts on the development of vascular disease in diabetes mellitus. Nephrol Dial Transplant 1996; 11 (Suppl. 5): 1316.
  • 195
    Bierhaus A, Chevion S, Chevion M, et al. Advanced glycation end products (AGEs) induced activation of NF-κB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 1997; 46: 14811490.
  • 196
    Yan SD, Schmidt A-M, Anderson GM, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors binding proteins. J Biol Chem 1994; 269: 98899897.
  • 197
    Cybulsky M, Gimbrone M. Endothelial expression of mononuclear leukocyte adhesion molecule during arteriogenesis. Science 1991; 251: 788791.
  • 198
    Hofmann MA, Schiekofer S, Kanitz M, et al. Insufficient glycemic control increases NF-κB binding activity in peripheral blood mononuclear cells isolated from patients with type-1 diabetes. Diabetes Care 1998; 21: 17.
  • 199
    Hofmann MA, Schiekofer S, Isermann B, et al. Peripheral blood mononuclear cells isolated from patients with diabetic nephropathy demonstrate increased activation of the oxidative stress sensitive transcription factor NF-κB. Diabetologia 1999; 42: 222232.
  • 200
    Hofmann M, Bierhaus A, Sernau T, et al. Advanced Glycation Endproducts (AGEs) und ihr Rezeptor ‘RAGE’. Bedeutung bei der Entstehung diabetischer Spätschäden. Diabetes und Stoffwechsel 1996; 5 (Suppl. 3): 9093.
  • 201
    Nawroth PP, Borcea V, Bierhaus A, Joswig M, Schiekofer S, Tritschler HJ.Oxidative stress, NF-κB activation, and late diabetic complications. In Antioxidants in Diabetes Management, RösenP, PackerL, TritschlerHJ, AzziA, KingGL (eds). Marcel Dekker: New York, NY, 2000.
  • 202
    Leson CPM, Whincup PH, Cook DG, et al. Flow-mediated dilation in 9–11 year old children. Circulation 1997; 96: 22332238.
  • 203
    Tooke JE. Endotheliopathy precedes type 2 diabetes. Diabetes Care 1998; 21: 20472049.
  • 204
    Ignarro LJ. Physiology and pathphysiology of nitric oxide. Kidney Int 1990; 55: S2S5.
  • 205
    Pieper GM. A review of alterations in endothelial nitric oxide production in diabetes: protective role of arginine on endothelial dysfunction. Hypertension 1998; 31: 10471060.
  • 206
    Bank N, Aynedjan HS. Role of EDRF (nitric oxide) in diabetic renal hyperfiltration. Kidney Int 1993; 43: 13061312.
  • 207
    Tolins JP, Shultz PJ, Raij L, Brown DM, Mauer SM. Abnormal renal hemodynamic response to reduced renal perfusion pressure in diabetic rats: role of NO. Am J Physiol 1993; 265: F886F895.
  • 208
    Komers R, Allen TJ, Cooper ME. Role of endothelium derived nitric oxide in the pathohgenesis of the renal hemodynamic changes of experimental diabetes. Diabetes 1994; 43: 11901197.
  • 209
    Craven PA, Caines MA, DeRubertis FR. Sequential alterations in glomerular prostaglandin and thromboxane synthesis in diabetic rats: relationship to the hyperfiltration of early diabetes. Metabolism 1987; 36: 95103.
  • 210
    Williams B, Schrier RW. Glucose-induced protein kinase C activity regulates arachidonic acid release and eicosanid production by cultured glomerular mesangial cells. J Clin Invest 1993; 92: 28892896.
  • 211
    Ditzel J, Schwartz M. Abnormally increased glomerular filtration rates in short-term insulin treated diabetic subjects. Diabetes 1967; 16: 264267.
  • 212
    Christiansen JS, Gammelgaard J, Fraandsen M, Parving HH. Increased kidney size, glomerular filtration rate and renal plasma flow in short-term insulin dependent diabetes. Diabetologia 1991; 20: 451456.
  • 213
    Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int 1981; 19: 410415.
  • 214
    Beckmann J, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 1996; 271: C1424C1437.
  • 215
    Ohara Y, Petersen TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993; 91: 844851.
  • 216
    Bouloumie A, Bauersachs J, Linz W, et al. Endothelial dysfunction coincides with an enhanced nitric oxide synthase expression and superoxide anion production. Hypertension 1997; 30: 934941.
  • 217
    Sui GZ, Du XL, Rösen P. High glucose increases the formation of nitrotyrosine as marker of oxidative stress in human endothelial cells. Diabeteologia 1998; 41: A317.
  • 218
    Bucala R, Tracey KJ, Ceramin A. Advanced glycation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 1991; 87: 432438.
  • 219
    Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilatation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1997; 97: 2228.
  • 220
    Ting HH, Timimi FK, Haley EA, Roddy MA, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilatation in forearm resistance vessels of humans with hypercholesterolemia. Circulation 1997; 95: 26172622.
  • 221
    Vita JA, Frei B, Holbrook M, Gokse N, Leaf C, Keaney JF. L-2-Oxothizolidine-4-carboxylic acid reverses endothelial dysfunction in patients with coronary artery disease. J Clin Invest 1998; 101: 14081414.
  • 222
    Kugiyama K, Motoyama T, Doi H, et al. Improvement ofendothelial vasomotor dysfunction by treatment with a-tocopherol in patients with high remnant lipoprotein levels. J Am Coll Cardiol 1999; 33: 15121518.
  • 223
    Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med 1995; 332: 488493.
  • 224
    Lefer AM, Lefer DJ. The role of nitric oxide and cell adhsion molecules on the microcirculation in ischemia-reperfusion. Cardiovasc Res 1996; 32: 743751.
  • 225
    Lee TS, Saltsman LA, Onishi H, King GL. Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc Natl Acad Sci U S A 1989; 86: 51415145.
  • 226
    Kawana M, Lee ME, Quertermous EE, Quertermous T. Cooperative interaction of GATA-2 and AP1 regulates transcription of endothelin-1 gene. Mol Cell Biol 1995; 15: 42254231.
  • 227
    Takagi C, Bursell SE, Lin YW, et al. Regulation of retinal hemodynamics in diabetic rats by increased expression and action of endothelin-1. Invest Ophthalmol Vis Sci 1996; 37: 25042518.
  • 228
    Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluids of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994; 331: 14801487.
  • 229
    Williams B, Gallachen B, Patel H, Orme C. Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by vascular smooth muscle cells in vitro. Diabetes 1997; 46: 14971503.
  • 230
    Bursell SE, Clermont AC, Aiello LP, et al. High-dose vitamin E supplementation normalizes retinal blod flow and creatinine clearance in patients with type 1 diabetes. Diabetes Care 1999; 22: 12451251.
  • 231
    Gilbert RE, Cox A, Wu LL. Expression of transforming growth factor beta 1 and type IV collagen in the renal tubulointerstitium in experimental diabetes: effects of ACE inhibition. Diabetes 1998; 47: 414422.
  • 232
    Park IS, Kiyomoto H, Abboud SL, Abboud HE. Expression of transforming growth factor-beta and type IV collagen in early streptozotocin-induced diabetes. Diabetes 1997; 46: 473480.
  • 233
    Sumida Y, Ura H, Yano Y, Misaki M, Shima T. Abnormal metabolism of type IV collagen in normotensive non-insulin-dependent diabetes mellitus patients. Horm Res 1997; 48: 2328.
  • 234
    Williamson JR, Chang K, Tilton RG, et al. Increased vascular permeability in spontaneously diabetic BB/W rats with mild versus severe streptozotocin-induced diabetes. Diabetes 1987; 36: 813821.
  • 235
    Oliver JA. Adenylate cyclase and protein kinase C mediate opposite actions on endothelial junctions. J Cell Physiol 1990; 145: 536542.
  • 236
    Lynch JJ, Ferro TJ, Blumenstock FA, Brockenauer AM, Malik AM. Increased endothelial albumin permeability mediated by protein kinase C activation. J Clin Invest 1990; 85: 19911998.
  • 237
    Lynch JJ, Ferro TJ, Blumenstock FA, Brockenauer AM, Malik AB. Increased endothelial albumin permeability mediated by protein kinase C activation. J Clin Invest 1990; 85: 19911998.
  • 238
    Chua CC, Hamdy RC, Chua BH. Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic Biol Med 1998; 25: 891897.
  • 239
    Luft FC, Mervaala E, Muller DN, et al. Hypertension-induced end-organ damage: a new transgenic approach to an old problem. Hypertension 1999; 33: 212218.
  • 240
    Sharma K, Ziyadeh FN. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key modulator. Diabetes 1995; 44: 11391146.
  • 241
    Aiello LP, Bursell S-E, Clermont A, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective β-isoform-selective inhibitor. Diabetes 1997; 46: 14731480.
  • 242
    Xia P, Aiello LP, Ishii H, et al. Characterization of vascular endothelial growth factor's effect on activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest 1996; 98: 20182026.
  • 243
    Williamson JR, Kilo C. Extracellular matrix changes in diabetes mellitus. In Comparative Pathobiology of Major Age-related Diseases, ScapelliDG, MigahiG (eds). Liss: New York, NY, 1984; 269288.
  • 244
    Scheinman JL, Fish AJ, Matas AJ, Michael AF. The immunohistopathology of glomerular antigens. II. The glomerular basement membrane, actomyosin, and fibroblast surface antigens in normal, diseased and transplanted human kidneys. Am J Pathol 1978; 90: 7188.
  • 245
    Bruneval P, Foidart JM, Nochy D, Camilleri JP, Bariety J. Glomerular matrix proteins in nodular glomerulosclerosis in association with light chain deposition disease and diabetes mellitus. Hum Pathol 1985; 16: 477484.
  • 246
    Studer RK, Craven PA, DeRubertis FR. Role for protein kinase C in the mediation of increased fibronectin accumulation by mesangial cells grown in high glucose medium. Diabetes 1993; 42: 118126.
  • 247
    Ayo SH, Radnik RA, Garoni J, Glass II WF, Kreisberg JI. Highglucose causes an increase in extracellular matrix proteins in cultured mesangial cells. Am J Pathol 1990; 136: 13391348.
  • 248
    Ayo SH, Radnik RA, Glass II WF, et al. Increased extracellular matrix synthesis and mRNA in mesangial cells grown in high-glucose medium. Am J Physiol 1991; 260: F185F191.
  • 249
    Pugliese G, Pricci F, Pugliese F, et al. Mechanisms of glucose-enhanced extracellular matrix accumulation in rat glomerular mesangial cells. Diabetes 1994; 43: 478490.
  • 250
    Bowie A, Owens D, Collins P, Johnson A, Tomkin GH. Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient. Arteriosclerosis 1993; 102: 6367.
  • 251
    Haneda M, Kikkawa R, Horide N, et al. Glucose enhances type IV collagen production in cultured rat glomerular mesangial cells. Diabetologia 1991; 24: 198200.
  • 252
    Walker JD, Viberti GC. Pathophysiology of microvascular disease: an overview. In Chronic Complications of Diabetes, PickupJC, WilliamsG (eds). Blackwell Scientific: Oxford, UK, 1994; 1119.
  • 253
    Packer L. Protection of human low density lipoprotein from oxidation by vitamin E and the antioxidant network: interaction with vitamin C and lipoic (thioctic) acid. Diabetes und Stoffwechsel 1997; 6 (Suppl. 2): 410.
  • 254
    Bowie A, Owens D, Collins P, Johnson A, Tomkin GH. Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient. Arteriosclerosis 1993; 102: 6367.
  • 255
    Jialal I, Fuller CJ, Huet BA. The effect of α-tocopherol supplementation on LDL oxidation: a dose dependent study. Arterioscler Throm Vasc Biol 1995; 15: 190198.
  • 256
    Salonen JT, Yla-Herttuala S, Yamamoto R, et al. Autoantibody against oxidized LDL and progression of carotid arteriosclerosis. Lancet 1992; 339: 883887.
  • 257
    Puurunen M, Manttari M, Manninen V, et al. Antibody against oxidized low-density lipoprotein predicting myocardial infarction. Arch Intern Med 1994; 154: 26052609.
  • 258
    Parums DV, Brown DL, Mitchinson MJ. Serum antibodies to oxidized lipoprotein and ceroid in chronic periaortitis. Arch Pathol Lab Med 1990; 114: 383387.
  • 259
    Gey KF, Puska P, Jordan P, Maser UK. Inverse correlation between plasma vitamin E and mortality from ischemic heart disease in cross-cultural epidemiology. Am J Clin Nutr 1991; 53: 326S334S.
  • 260
    Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC. Vitamin E consumption and the risk of coronary disease in women. N Engl J Med 1993; 328: 14441449.
  • 261
    Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 1993; 328: 14501456.
  • 262
    Stephens NG, Kelley FJ. Vitamin E and coronary artery disease. Diabetes und Stoffwechsel 1997; 6 (Suppl. 2): 4144.
  • 263
    Stephens NG, Parsons A, Schofield PM, et al. A randomized controlled trial of vitamin E in patients with coronary diseases: the Cambridge heart antioxidant study (CHAOS). Lancet 1996; 347: 781786.
  • 264
    Buring JE. Epidemiologic evidence on vitamin E in the prevention and treatment of cardiovascular disease. Diabetes und Stoffwechsel 1997; 6 (Suppl. 2): 3840.
  • 265
    Jha P, Flather M, Lonn E, Farkouh M, Yusuf S. The antioxidant vitamins and cardiovascular disease. A critical review of epidemiologic and clinical data. Ann Intern Med 1995; 123: 860872.
  • 266
    Rudich A, Kozlovsky N, Potashnik R, Bashan N. Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes. Am J Physiol 1997; 272: E935E940.
  • 267
    Rudich A, Tirosh M, Khamaisi D, Pessler R, Potashnik R, Bashan N. Putative role for oxidative stress in adipocyte and skeletal muscle insulin resistance. Diabetologia 1998; 41 (Suppl. 1): A34.
  • 268
    Paolisso G, Giugliano D. Oxidative stress and insulin action: is there a relationship? Diabetologia 1996; 39: 357363.
  • 269
    Paolisso G, D'Amore A, DiMaro G, Galzerano D, Tesauro P, Varricchio M. Evidence for a relationship between free radicals and insulin action in elderly. Metabolism 1993; 42: 659663.
  • 270
    Ceriello A. Is oxidative stress the missing link between insulin resistance and atherosclerosis? Diabetologia 1995; 38: 14841485.
  • 271
    Ceriello A. Oxidative stress and glycemic regulation. Metabolism 2000; 49 (Suppl. 2): 2729.
  • 272
    Fesken EJ, Virtanen SM, Rasanen L, Tuomilehto J, Stengard J, Pekkanen J. Diatary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care 1995; 18: 11041112.
  • 273
    Vijayalingam S, Parthiban A, Shanmugasundaram KR, Mohan V. Abnormal antioxidant status in impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabet Med 1996; 13: 715719.
  • 274
    Sadaivudu B, Sasikala M, Sailaja V, Reddy SS. Serum malondialdehyde, insulin, glucose and lipid profile in hypertension. Med Sci Res 1997; 25: 631633.
  • 275
    Niskanen LK, Salonen JT, Nyyssonen K, Uusitupa MI. Plasma lipid peroxidation and hyperglycemia: a connection through hyperinsulinaemia? Diabet Med 1995; 12: 802808.
  • 276
    Haugaard N, Haugaard E. Stimulation of glucose utilization by thioctic acid in rat diaphragm incubated in vitro. Biochim Biophys Acta 1970; 222: 583586.
  • 277
    Jacob S, Streeper R, Fogt D, et al. The antioxidant α-lipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant rat skeletal muscle. Diabetes 1996; 45: 10241029.
  • 278
    Estrada D, Ewart H, Tsakiridis T, et al. Stimulation of glucose uptake by the natural coenzyme α-lipoic acid/thioctic acid. Diabetes 1996; 45: 17981804.
  • 279
    Henrikson EJ, Jacob S, Streeper RS, Fogt DL, Hokama JY, Tritschler HJ. Stimulation by α-lipoic acid of glucose transporter activity in skeletal muscle of lean and obese zucker rats. Life Sci 1997; 61: 805812.
  • 280
    Streeper RS, Henriksen EJ, Jacob S, Hokama JY, Fogt DL, Tritschler HJ. Differential effects of lipoic acid stereoisomeres on glucose metabolism in insulin-resistant skeletal muscle. Am J Physiol 1997; 273: E185E191.
  • 281
    Strödter D, Lehmann E, Lehmann U, Tritschler HJ, Bretzel RG, Federlin K. The influence of thioctic acid on metabolism and function of the diabetic heart. Diabetes Res Clin Pract 1995; 29: 1926.
  • 282
    Khamisi M, Potashnik R, Tirosh A, et al. Lipoic acid reduces glycemia and increases muscle GLUT 4 content in streptozotocin-diabetic rats. Metabolism 1997; 46: 763768.
  • 283
    Jacob S, Henrikson EJ, Tritschler HJ, Augustin HJ, Dietze GJ. Improvement of insulin-stimulated glucose-disposal in type 2 diabetes after repeated parenteral administration of thioctic acid. Exp Clin Endocrinol Diabetes 1996; 104: 284288.
  • 284
    Rett K, Wicklmayr M, Maeker E, Ruus P, Nehrdich D, Herrmann R. Effect of acute infusion of thioctic acid on oxidative and non-oxidative metabolism in obese subjects with NIDDM (Abstract). Diabetologia 1995; 38: A41.
  • 285
    Jacob S, Ruus P, Herrmann R, et al. Oral administration of rac-α-lipoic acid modulates insulin sensitivity in patients with type 2 diabetes. A placebo-controlled pilot trial. Free Radic Biol Med 1999; 27: 309314.
  • 286
    Jacob S, Henrikson EJ, Schiemann AL, et al. α-Lipoic acid enhances glucose disposal in patients with type 2 diabetes. Arzneimittelforschung/Drug Research 1995; 45: 872874.
  • 287
    Konrad T, Vicini P, Kusterer K, et al. Alpha lipoic acid treatment decreases serum lactate and pyruvate concentrations and improves glucose effectiveness in lean and obese patients with type II diabetes. Diabetes Care 1999; 22: 280287.
  • 288
    Paolisso G, D'Amore A, Giugliano D, Ceriello A, Varricchio M, D'Onofrio F. Pharmacologic doses of vitamin E improve insulin action in healthy subjects and non-insulin-dependent diabetic patients. Am J Clin Nutr 1993; 57: 650656.
  • 289
    Paolisso G, D'Amore A, Galzerano D, Balbi V, Guigliano D, Varricchio M. Daily vitamin E supplements improve metabolic control but not insulin secretion in elderly type II diabetic patients. Diabetes Care 1993; 16: 14331437.
  • 290
    Paolisso G, Di Maro G, Galzerano D, Cacciapuoti F, Varricchio G, Varricchio M. Pharmacological doses of vitamin E and insulin action in elderly subjects. Am J Clin Nutr 1994; 59: 12911296.
  • 291
    Paolisso G, Gambardella A, Giugliano D, Galzerano D, Amato L, Volpe C. Chronic intake of pharmacological doses of vitamin E might be useful in the therapy of elderly patients with coronary heart disease. Am J Clin Nutr 1995; 61: 848852.
  • 292
    Paolisso G, Balbi V, Volpe C, Varricchio G, Gambardella A, Saccomanno F. Metabolic benefits deriving from chronic vitamin C supplementation in aged non-insulin dependent diabetics. J Am Coll Nutr 1995; 14: 387392.
  • 293
    Paolisso G, D'Amore A, Balbi V, Volpe C, Galzerano D, Giugliano D. Plasma vitamin C affects glucose homeostasis in healthy subjects and non-insulin-dependent diabetics. Am J Physiol 1994; 266: E261E268.
  • 294
    Laurenti O, Bravi MC, Cassone Faldetta M, Ferri C, Bianco G, Armiento A. Glutathione effects on insulin resistance in non-insulin-dependent diabetes mellitus. Diabetologia 1997; 40: A305.
  • 295
    Paolisso G, Tagliamonte MR, Marfella R, Verrazzo G, D'Onofrio F, Giugliano D. L-Arginine but not D-arginine stimulates insulin-mediated glucose-uptake. Metabolism 1997; 46: 10681073.
  • 296
    Mandrup-Poulsen T. The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia 1996; 39: 10051029.
  • 297
    Eizirik DL, Flodstrom M, Karlsen AE. The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia 1996; 39: 875890.
  • 298
    Kikutani H, Makino S. The murine autoimmune diabetes model: NOD and related strains. Adv Immunol 1992; 51: 285322.
  • 299
    Andre I, Gonzalez A, Wang B. Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc Natl Acad Sci U S A 1996; 93: 22602263.
  • 300
    Grankvist K, Marklund SL, Sehlin J. Superoxide dismutase, catalase and scavangers of hydroxyl radical protect against the toxic action of alloxan on pancreatic islet cells in vitro. Biochem J 1979; 182: 1725.
  • 301
    Malaisse WJ, Malaisse-Lagae F, Sener A. Determinants of the selective toxicity of alloxan to the pancreatic beta cell. Proc Natl Acad Sci U S A 1982; 79: 927930.
  • 302
    Takasu N, Komiya I, Asawa T. Streptozotocin- and alloxan-induced H2O2 as mediator for DNA fragmentation. Diabetes 1991; 40: 11411145.
  • 303
    Grankvist K, Marklund SL, Taljedal IB. CuZn-superoxide disputes, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 1981; 199: 393398.
  • 304
    Grandy SE, Galbraith RA, Crouch RK. Superoxide dismutase in human islets of Langerhans. N Engl J Med 1981; 304: 15471548.
  • 305
    Cornelius JG, Luttge BG, Peck AB. Antioxidant enzyme activities in IDD-prone and IDD-resistant mice: a comparative study. Free Radic Biol Med 1993; 14: 409420.
  • 306
    Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 1996; 20: 463466.
  • 307
    Yamada K, Nonaka K, Hanafusa T. Preventive and therapeutic effects of large-dose nicotinamide injections on diabetes associated with insulitis. Diabetes 1982; 31: 749753.
  • 308
    Elliott RB, Pilcher CC, Steward A. The use of nicotinamide in the prevention of type 1 diabetes. Ann N Y Acad Sci 1993; 696: 333341.
  • 309
    Beales PE, Williams AJ, Albertini MC. Vitamin E delays diabetes onset in the non-obese diabetic mouse. Horm Metab Res 1994; 26: 450452.
  • 310
    Hotta M, Yamato E, Miyazaki JI. Oxidative stress and pancreatic β-cell destruction in insulin dependent diabetes mellitus. In Antioxidants in Diabetes Management, RösenP, PackerL, TritschlerHJ, AzziA, KingGL (eds). Marcel Dekker: New York, NY, 2000; 265274.