• 1
    Cogan DG, Troussaint D, Kuwabara T. Retinal vascular patterns IV. Diabetic retinopathy. Arch Ophthalmol 1961; 66: 366378.
  • 2
    Speiser P, Gittelsohn A, Patz A. Studies on diabetic retinopathy III. Influence of diabetes on intramural pericytes. Arch Ophthalmol 1968; 80: 322337.
  • 3
    Mizutani M, Kern T, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 1996; 97(12): 28832890.
  • 4
    Kimura K, Toyota T, Kakizaki M, et al. Impaired insulin secretion in the spontaneous diabetes rats. Tohoku J Exp Med 1982; 137(4): 453459.
  • 5
    Abdel Halim SM, Guenifi A, Luthman H, et al. Impact of diabetic inheritance on glucose tolerance and insulin secretion in spontaneously diabetic GK-Wistar rats. Diabetes 1994; 43(2): 281288.
  • 6
    Ostenson CG, Khan A, Abdel Halim SM, et al. Abnormal insulin secretion and glucose metabolism in pancreatic islets from the spontaneously diabetic GK rat. Diabetologia 1993; 36(1): 38.
  • 7
    Abdel Halim SM, Ostenson CG, Andersson A, et al. A defective stimulus-secretion coupling rather than glucotoxicity mediates the impaired insulin secretion in the mildly diabetic F1 hybrids of GK-Wistar rats. Diabetes 1995; 44(11): 12801284.
  • 8
    Yagihashi S, Goto Y, Kakizaki M, et al. Thickening of glomerular basement membrane in spontaneously diabetic rats. Diabetologia 1978; 15(4): 309312.
  • 9
    Goto Y, Kakizaki M, Yagihashi S. Neurological findings in spontaneously diabetic rats. Excerpta Med Int Cong Ser 1982; 581: 2638.
  • 10
    Agardh CD, Agardh E, Zhang H, et al. Altered endothelial/pericyte ratio in Goto-Kakizaki rat retina. J Diabetes Complications 1997; 11(3): 158162. DOI: 10.1016/S1056-8727(96)00049-9.
  • 11
    Feener EP, King GL. Vascular dysfunction in diabetes mellitus. Lancet 1997; 350(Suppl. 1): SI9S13.
  • 12
    Stahl Wa, Sies H. Antioxidant defense: vitamins E and C and carotenoids. Diabetes 1997; 46(Suppl. 2): S14S18.
  • 13
    Nakamura S, Makita Z, Ishikawa S, et al. Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. Diabetes 1997; 46(5): 895899.
  • 14
    Tsuchida K, Makita Z, Yamagishi S, et al. Suppression of transforming growth factor beta and vascular endothelial growth factor in diabetic nephropathy in rats by a novel advanced glycation end product inhibitor, OPB-9195. Diabetologia 1999; 42(5): 579588. DOI: 10.1007/s001250051198.
  • 15
    Miyata T, Ueda Y, Asah K, et al. Mechanism of the inhibitory effect of OPB-9195 [(+/−)-2-isopropylidenehydrazono-4-oxo-thiazolidin-5-ylacetanilide] on advanced glycation end product and advanced lipoxidation end product formation. J Am Soc Nephrol 2000; 11(9): 17191725.
  • 16
    Miyata T, Kurokawa K, De-Strihou CV. Advanced glycation and lipoxidation end products: role of reactive carbonyl compounds generated during carbohydrate and lipid metabolism. J Am Soc Nephrol 2000; 11(9): 17441752.
  • 17
    Boeri D, Cagliero E, Podesta F, et al. Vascular wall von Willebrand factor in human diabetic retinopathy. Invest Ophthalmol Vis Sci 1994; 35(2): 600607.
  • 18
    Gavrieli Y, Sherman Y, Ben Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992; 119(3): 493501.
  • 19
    Gold R, Schmied M, Giegerich G, et al. Differentiation between cellular apoptosis and necrosis by the combined use of in situ tailing and nick translation techniques. Lab Invest 1994; 71(2): 219225.
  • 20
    Kern TS, Engerman RL. Comparison of retinal lesions in alloxan-diabetic rats and galactose-fed rats. Curr Eye Res 1994; 13(12): 863867.
  • 21
    Horiuchi S, Araki N, Morino Y. Immunochemical approach to characterize advanced glycation end products of the Maillard reaction. Evidence for the presence of a common structure. J Biol Chem 1991; 266(12): 73297332.
  • 22
    Araki N, Ueno N, Chakrabarti B, et al. Immunochemical evidence for the presence of advanced glycation end products in human lens proteins and its positive correlation with aging. J Biol Chem 1992; 267(15): 10 21110 214.
  • 23
    Miyata T, Oda O, Inagi R, et al. Beta 2-microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J Clin Invest 1993; 92(3): 12431252.
  • 24
    Kern TS, Tang J, Mizutani M, et al. Response of capillary cell death to aminoguanidine predicts the development of retinopathy: comparison of diabetes and galactosemia. Invest Ophthalmol Vis Sci 2000; 41(12): 39723978.
  • 25
    Ingold K, Webb A, Witter D, et al. Vitamin E remains the major lipid-soluble, chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency. Arch Biochem Biophys 1987; 259: 224225.
  • 26
    Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404: 787790. DOI: 1038/35008121.
  • 27
    Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes 2001; 50: 19381942.
  • 28
    Mustata GT, Rosca M, Monnier VM. Paradoxical effects of green tea (Camellia Sinensis) and antioxidant vitamins in diabetic rats. Improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking. Diabetes 2005; 54: 517526.
  • 29
    Courderot Masuyer C, Dalloz F, Maupoil V. et al. Antioxidant properties of aminoguanidine. Fundam Clin Pharmacol 1999; 13(5): 535540.
  • 30
    Ihm SH, Yoo HJ, Park SW, et al. Effect of aminoguanidine on lipid peroxidation in streptozotocin-induced diabetic rats. Metabolism 1999; 48(9): 11411145.
  • 31
    Kedziora Kornatowska K, Luciak M. Effect of aminoguanidine on lipid peroxidation and activities of antioxidant enzymes in the diabetic kidney. Biochem Mol Biol Int 1998; 46(3): 577583.
  • 32
    Giardino I, Fard AK, Hatchell DL, et al. Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes 1998; 47(7): 11141120.
  • 33
    Ikeda K, Higashi T, Sano H, et al. N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry 1996; 35(24): 80758083. DOI: 10.1021/bi9530550.
  • 34
    Nakayama M, Izumi G, Nemoto Y, et al. Suppression of N(epsilon)-(carboxymethyl)lysine generation by the antioxidant N-acetylcysteine. Perit Dial Int 1999; 19(3): 207210.
  • 35
    Nerlich AG, Schleicher ED. N(epsilon)-(carboxymethyl)lysine in atherosclerotic vascular lesions as a marker for local oxidative stress. Atherosclerosis 1999; 144(1): 4147. DOI: 10.1016/S0021-9150(99)00038-6.
  • 36
    Horie K, Miyata T, Maeda K, et al. Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. J Clin Invest 1997; 100(12): 29953004.
  • 37
    Elgawish A, Glomb M, Friedlander M, et al. Involvement of hydrogen peroxide in collagen cross-linking by high glucose in vitro and in vivo. J Biol Chem 1996; 271(22): 12 96412 971.
  • 38
    Fu MX, Requena JR, Jenkins AJ, et al. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem 1996; 271(17): 99829986.