Receptor-dependent regulation of dendrite formation of noradrenaline and dopamine in non-gabaergic cerebral cortical neurons

Authors


Correspondence to: Takashi Shiga (tshiga@md.tsukuba.ac.jp).

Abstract

The present study characterized the receptor-dependent regulation of dendrite formation of noradrenaline (NA) and dopamine (DA) in cultured neurons obtained from embryonic day 16 rat cerebral cortex. Morphological diversity of cortical dendrites was analyzed on various features: dendrite initiation, dendrite outgrowth, and dendrite branching. Using a combination of immunocytochemical markers of dendrites and GABAergic neurons, we focused on the dendrite morphology of non-GABAergic neurons. Our results showed that (1) NA inhibited the dendrite branching, (2) β adrenergic receptor (β-AR) agonist inhibited the dendrite initiation, while promoted the dendrite outgrowth, (3) β1-AR and β2-AR were present in all the cultured neurons, and both agonists inhibited the dendrite initiation, while only β1-AR agonist induced the dendrite branching; (4) DA inhibited the dendrite outgrowth, (5) D1 receptor agonist inhibited the dendrite initiation, while promoted the dendrite branching. In conclusion, this study compared the effects of NA, DA and their receptors and showed that NA and DA regulate different features on the dendrite formation of non-GABAergic cortical neurons, depending on the receptors. © 2012 Wiley Periodicals, Inc. Develop Neurobiol 73: 370–383, 2013

Ancillary