Synthetic matrix metalloproteinase inhibitor decreases early cardiac neural crest migration in chicken embryos

Authors


Abstract

During early embryonic development, cardiac neural crest (NC) cells emerge from the forming neural tube, migrate beneath the ectoderm, enter the pharyngeal arches, and subsequently participate in the septation of the heart. Like tumor cells, NC cells penetrate through basement membranes and invade extracellular matrix during their emigration and migration and, therefore, are liable to use similar invasive mechanisms. Matrix metalloproteinases (MMPs) are a family of zinc proteolytic enzymes known to be important in cell migration and invasion of normal and metastatic cells. In an earlier study, we found that the spatial and temporal distribution pattern of MMP-2 positively correlates with cardiac NC migration, suggesting MMP enzymatic activity may be important in mediating cardiac cell NC migration. To test this hypothesis, a synthetic MMP inhibitor, KB8301, was used to block MMP enzymatic activity during in vitro and in vivo cardiac NC cell migration in chick embryos. Injection of KB8301 into the cell-free space adjacent to the neural tube at the level of the second somite before the NC cells emigrated caused major morphologic anomalies in embryos and disrupted cardiac NC morphogenesis. Unilateral injection of KB8301 at lower concentrations, significantly decreased cardiac NC migration on the injected side compared with the noninjected side and compared with that of the injected controls. This decrease correlated with a decrease in MMP activity in the embryos and was not attributable to differences in embryo size or rate of embryonic development after injection. KB8301 also significantly decreased the rate of NC cell motility and distance NC cells migrated from explanted neural tubes and increased cell area and perimeter. These data suggest that MMP enzymatic activity is an important mediator of early cardiac NC migration and that perturbation of endogenous MMP activity may lead to NC-related congenital defects. © 2002 Wiley-Liss, Inc.

Ancillary