SEARCH

SEARCH BY CITATION

Keywords:

  • embryogenesis;
  • epithelial–mesenchymal interaction;
  • eye;
  • CNS;
  • Eaf2;
  • ELL;
  • in situ hybridization

Abstract

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. RESULTS
  5. DISCUSSION
  6. EXPERIMENTAL PROCEDURES
  7. Acknowledgements
  8. REFERENCES

Eaf2, ELL-associated factor 2, encodes a protein that is homologous to the human EAF1, which was shown to interact with the transcriptional elongation factor MEN/ELL. During mouse embryogenesis, Eaf2 is preferentially expressed in the central nervous system and in sensory and neuroendocrine organs, including the brain, spinal cord, cranial and spinal ganglia, developing otocyst, the retina, and the pituitary. Eaf2 transcripts were also found in sites where active epithelium–mesenchymal interactions are occurring. These included the invaginating tooth buds, mammary gland anlage, submandibular glands, the lung, the pancreas, and the kidney. Other sites of expression included bladder and intestine. In the developing lens, Eaf2 transcripts were absent in the proliferating anterior lens epithelial cells but were present in the terminally differentiated primary lens fiber cells and also in nonproliferating lens fiber cells in the equatorial zone where lens epithelial cells withdraw from cell cycle and terminally differentiate into secondary lens fiber cells. This spatially restricted pattern of Eaf2 expression in the developing lens suggests that Eaf2 may play an important role in regulating lens maturation. Developmental Dynamics 228:273–280, 2003. © 2003 Wiley-Liss, Inc.


INTRODUCTION

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. RESULTS
  5. DISCUSSION
  6. EXPERIMENTAL PROCEDURES
  7. Acknowledgements
  8. REFERENCES

During embryonic development as well as during tissue regeneration and repair, cell proliferation and differentiation are highly regulated and well coordinated events that require de novo transcription of tissue-specific or cell-specific genes. Activation of target gene transcription is initiated by tissue- or cell-specific transcriptional factors and their chromatin remodeling coactivators in contact with the RNA polymerase II (RNAP II) initiation complex (Emerson, 2002). During the elongation phase, RNAP II encounters numerous structural obstacles causing RNAP II to either pause or terminate transcription prematurely. In mammalian cells, several factors have been identified that can enhance RNAP II processivity in vitro (Shilatifard, 1998; Conaway and Conaway, 1999). Among these factors that process the elongation activity are Eleven-nineteen Lysine-rich Leukemia (ELL) family of proteins (Thirman et al., 1994, 1997; Mitani et al., 1995; Shilatifard et al, 1996; Shilatifard et al., 1997; Miller et al., 2000).

The ELL gene was initially identified on chromosome 19p 13.1, which undergoes frequent translocation with the MLL gene on chromosome 11q23 in acute myeloid leukemia (AML; Thirman et al., 1994). ELL may play an essential role in regulating developmental processes as its expression is spatially and temporally restricted during embryogenesis (Thirman et al., 1997) and inactivation of murine Ell by gene targeting resulted in embryonic lethality around the time of gastrulation (Mitani et al., 2000). In Drosophila, loss-of-function mutations in dELL locus cause recessive lethality and segmentation defects in developing larva (Eissenberg et al., 2002). In culture, overexpression of ELL inhibits cell division and induces apoptosis (Johnstone et al., 2001). Remarkably, the growth-suppression and death-promoting activities of ELL can be assigned to discrete functional domains that possess elongation-enhancing activities and immortalizing functions, respectively (Kanda et al., 1998; DiMartino et al., 2000; Johnstone et al., 2001). This finding further suggests the existence of distinct interaction surfaces on ELL and through which ELL could be differentially regulated.

Previously, several ELL-interacting partners have been identified and have been shown to mask the inhibitory activity of ELL in transcription initiation and to stimulate RNA elongation (Schmidt et al., 1999; Kamura et al., 2001) or transcription (Simone et al., 2001, 2003). Human EAF1 and EAF2 are two of these ELL-associated factors that had been shown to enhance transcription (Simone et al., 2001, 2003). ELL and EAF1 colocalize with p80 coilin and may function as components of Cajal bodies, a nuclear compartment involved in snRNP biogenesis (Gall, 2000; Polak et al., 2003). Further studies showed that EAF-interacting domain in ELL is essential for the transformation activity of the MLL–ELL fusion protein (Luo et al., 2001; Simone et al., 2003). EAF1 or EAF2 could replace ELL in its ability to immortalize hematopoietic progenitor cells when it was fused to MLL (Luo et al., 2001; Simone et al., 2003). Together, these data suggest that EAFs may function as oncoproteins if recruited by the MLL/ELL complex. However, very little is known about the expression pattern of these ELL-interacting molecules during embryonic development and their normal cellular functions.

In this report, we describe the cloning and expression of a new member of ELL-associated factors, murine Eaf2. Sequence comparisons revealed a high degree of amino acid sequence conservation among rodent and human EAF2 proteins. Eaf2 is expressed preferentially in the central nervous system (CNS) and sensory and neuroendocrine organs and in sites where active epithelium–mesenchymal interactions are occurring. Together these results suggest that Eaf2 may be an important regulator of morphogenesis, cell growth, and differentiation.

RESULTS

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. RESULTS
  5. DISCUSSION
  6. EXPERIMENTAL PROCEDURES
  7. Acknowledgements
  8. REFERENCES

Identification of cDNA Encoding EAF2

In performing a yeast two-hybrid screen to identify proteins that may potentially interact with murine Msx1, we isolated a novel cDNA clone. This cDNA produced a predicted open reading frame of 262 amino acids with a predicted molecular weight of 29.187 kDa (Fig. 1A). Charged residues constitute 27.86% of overall amino acid content and 17.6% of amino acids are composed of serine residues.

thumbnail image

Figure 1. The cDNA sequence and the deduced amino acid sequence of murine Eaf2 and its homologs based on sequence alignments. A: The cDNA sequence and deduced open reading frame of Eaf2 corresponded to the longest cDNA clone isolated from the cDNA library. The first ATG codon and the stop codon are underlined. B: Amino acid sequence alignments among known members of mammalian Eaf2. The mouse and rat Eaf2 were extremely conserved; the amino acid alignment shows 91% amino acid identities and 96% similarities considering conserved changes. The mouse Eaf2 and human EAF2 were highly conserved except for a small region in the C-terminus. The mouse and human sequences show 79% identities and 86% overall similarities at the amino acid level. Identical amino acids were highlighted dark gray, and conserved changed were shaded light gray. The consensus sequence was shown below aligned sequences. Conserved changes were indicated by a plus sign. C: The mouse Eaf2 is distantly related to human Eaf1; they show 53% overall amino acid identities and 65% similarities. Two conserved regions are evident from the alignment, one at the N-terminal domain and the other one at the extreme C-terminus. The solid line that runs above the aligned sequences highlights the serine-rich domain. D: Position-specific iterative BLAST (PSI-BLAST) resulted in the identification of a distantly related Eaf family member in the fruit fly Drosophila melanogaster. Cluster W alignment shows that this highly conserved region is located in the N-terminal regions of all Eafs.

Download figure to PowerPoint

BLASTp search of the GenBank nonredundant sequence database identified two human sequences (GenBank accession nos. AAH14209 and AAF67627) that are virtually identical to that of the mouse Eaf2 (Fig. 1B). Although the carboxyl terminus showed significant divergence, these proteins share 79% amino acid identities. In addition, we identified a rat ortholog of Eaf2 (GenBank accession no. AAL12225) that has 91% amino acids in common with the mouse Eaf2 (Fig. 1B). Furthermore, we identified a related human gene, EAF1 (GenBank accession no. AAK58687), that was previously cloned and characterized and its mouse Eaf1 ortholog (GenBank accession nos. BAC32058 and BAC31806; Fig. 1C). Although the overall amino acid homology between the murine Eaf2 and human EAF1 is only 53%, ClusterW alignment of protein sequences between Eaf2 and EAF1 identified two regions of significant homology: one at the N-terminus spanning from amino acids 10 to 127 (79% amino acid identities) and another at the extreme C-terminus between amino acids 243 and 262 (80% amino acid identities; Fig. 1C). A unique proline-rich domain found in the EAF1 distinguishes itself from the Eaf2 members of the family (Fig. 1C).

BLASTp search also identified a prototype sequence for the mammalian Eafs in the Drosophila genome encoded by the CG11166 gene (GenBank accession no. AAF59266). We tentatively named it dEaf. ClusterW alignment showed high degree of amino acid sequence similarities (48%) between the N-terminus of dEaf and the N-termini of mammalian Eafs (Fig. 1D). In addition, two other domains on dEaf exhibited considerable homology with mammalian Eafs; these were the serine-rich domain and the 20 amino acids at the extreme carboxyl terminus (40% similarities and 45% similarities, respectively; data not shown).

Expression Profile of Eaf2 in CNS

To gain a better understanding of sites where Eaf2 may exert its function alone or together with ELL, we decided to determine the expression pattern of Eaf2 during embryonic development by performing in situ hybridization on cryosections of developing mouse embryos. At embryonic day (E) 10, Eaf2 transcripts were found mainly in the developing brain and spinal cord (data not shown). In the mid-gestation embryo from E12 to E15, Eaf2 was expressed at very high levels throughout the developing CNS, including the brain, spinal cord, and cranial and spinal ganglia (Fig. 2A,B,E). Of interest, intense hybridization signals were also observed in sensory organs and neuroendocrine structures. These structures included the lens and retina of the developing eye, the cochlea of the embryonic ear, the olfactory epithelium, and the pituitary (Figs. 2A–D,F, 3A). In the developing eye, Eaf2 transcripts were absent from the developing optic vesicle before the appearance of retinal ganglion cells (RGCs; data not shown). In the mouse, RGC maturation initiates around E12.5 and peaked by E14.5 (Young, 1985; Brown et al., 2001). Expression of Eaf2 coincided remarkably with the birth of RGCs, and intense hybridization signal was preferentially found in the RGC layer of the developing retina (Fig. 2C,D). Of interest, Eaf2 transcripts were absent from actively cycling retinal cells in the retinal marginal zone and low level Eaf2 gene expression was detected in dividing cells in the residual portion of the neuroretina, excluding RGCs (Fig. 2C,D). In the developing lens, Eaf2 transcripts were found exclusively in the primary lens fiber cells but were ab sent in the anterior lens epithelium (Fig. 2C). As anterior lens epithelial cells move into the equatorial zone of the lens and exit cell cycle, Eaf2 was preferentially transcribed by the lens equatorial epithelial cells (Fig. 2D).

thumbnail image

Figure 2. Expression profile of Eaf2 in the central nervous system and sensory organs during mouse embryonic development. A: A parasagittal section of an embryo at embryonic day (E) 11 shows hybridization signal (purple stain) for Eaf2 transcripts in the brain (br), spinal cord (sc), spinal ganglia (white arrows), mandible (mb), and the gut (g). Eaf2 expression was not detected in the liver (li) and heart (h). B: In this frontal section through the head of an embryo at E12, stronger hybridization signal is seen in the diencephalon and in the neuroretina. Interestingly, Eaf2 expression in the ependymal layer of the brain was substantially less in intensity (arrow). C: Higher magnification view of a frontal section through the eye of an embryo at E12 shows selective hybridization in the presumptive retinal ganglion cell layer (white arrow) and primary lens fiber cells. The optic stalk (os) is also shown to produce Eaf2 transcripts. Interestingly, in the anterior lens epithelium cells (star) and the pigmented ciliary margins (arrowheads), where lens and retina progenitor cells are found, respectively, no Eaf2 transcripts were detected. D: In this section of the eye from an embryo at E15, Eaf2 expression in the retina could be separated into two zones based on expression level, the expression level in the outer layer is relatively weak in comparison to the inner layer where differentiated RGCs are located. In the lens, hybridization signal in the equatorial epithelium (arrow) is more intense. E: In the developing spinal cord of an embryo at E12, Eaf2 expression level is relatively low in the ependymal layer of dorsal half of the spinal cord (sc) in comparison to its expression in the mantle layer. Intense hybridization signal is seen in dorsal root ganglia (sg). F:Eaf2 transcripts were also detected in the olfactory epithelium (oe) of the nasal pits (black arrows) and a pair of vomeronasal organs (white arrows) in this frontal section of an embryo at E12. G:Eaf2 gene expression was found in the pituitary gland (pit) and cochlear (ch) of an embryo at E14.

Download figure to PowerPoint

thumbnail image

Figure 3. Eaf2 expression in epithelially derived organs. A: This parasagittal section of an embryonic day (E) 15 embryo shows hybridization of Eaf2 transcripts in the brain (br), cochlea (ch), eye (e), lung (lu), intestine (int), seminiferous tubules of the testis (te), kidney (ki), spinal ganglia (sg), and brown fat (bf). B: In the kidney of an embryo at E15, Eaf2 transcripts were found in the developing nephrons (white arrows). C: In the developing lung of an embryo at E15, intense hybridization signal was detected in bronchial epithelium, although lower expression level was also found in the lung mesenchyme. D: In the submandibular gland of an embryo at E15, strong hybridization signal was seen in the ductal epithelium. E: At E15, high levels of Eaf2 expression were seen in the tubular epithelium of the epididymis (black arrows). F:Eaf2 transcripts were detected (arrows) in the mammary buds from an embryo at E15. G:Eaf2 expression (arrows) was seen in vibrissae follicles of an embryo at E15. H,I:Eaf2 transcripts were found in the developing incisors and molars of an embryo at E13. Hybridization signals were more intense in the dental epithelium (white arrows) in contrast to the expression level in the dental mesenchyme (black arrows). J: At E15, Eaf2 expression continues as the tooth progresses through the bell stage. Hybridization signals were more intense in the dental epithelium (white arrow) in comparison to that in the mesenchyme (black arrow). ins, incisors; mb, mandible; p, palate; t, tongue; h, heart; li, liver; hl, hindlimb.

Download figure to PowerPoint

Expression Profile of Eaf2 During Epithelium–Mesenchymal Induction

Furthermore, Eaf2 transcripts were detected in structures that undergo extensive branching morphogenesis. Extensive expression was observed in the epithelia of developing nephrons, in the bronchial epithelium of the embryonic lung, in the secretory epithelium of submandibular glands, and in the tubular epithelium of the epididymis, although a greatly reduced level of Eaf2 expression was detected in the mesenchyme of these organs (Fig. 3A–E). In the ectodermal invaginations of mammary buds and vibrissae follicles, Eaf2 transcripts were also found (Fig. 3F,G). Of interest, Eaf2 transcripts were also detected in the developing incisors and molars (Fig. 3H–J). Again, Eaf2 expression was more intense in the dental epithelium, although a reduced amount of Eaf2 transcripts was also found in the dental mesenchyme and dental papilla (Fig. 3I,J). Other sites of expression included intestine and bladder endothelium (Fig. 3A; data not shown). In the developing liver and heart, Eaf2 transcript was absent or below the sensitivity of our detection method (Figs. 2A, 3A).

Expression Profile of Eaf2 in Adult Tissues

To determine the expression pattern of Eaf2 in adult tissues, we performed Northern blot hybridization on poly(A+) RNAs or total RNAs isolated from mouse adult tissues. Several adult tissues that perform reproductive functions, including the ovary, uterus, mammary glands, and testis, were found to produce Eaf2 transcripts (Fig. 4A,B). Eaf2 transcripts were also detected in the adult brain, spleen, liver, lung, thymus, and kidney (Fig. 4A). Skeletal muscle and skin expressed the Eaf2 gene at very low levels (Fig. 4B) as indicated by the relative intensity of hybridization signal in comparison to the control glucose-6-phosphate dihydrogenase probe. Eaf2 transcripts were undetectable in the adult heart (Fig. 4A).

thumbnail image

Figure 4. Expression profile of Eaf2 in the adult mouse. A: Two micrograms of polyA-selected mRNA from each selected adult mouse tissue and E14.5 embryos were blotted onto the membrane and hybridized to radiolabeled random-primed Eaf2 probe. Three transcripts with different molecular weights were detected based on Northern blot analysis. A major and the most abundant transcript is approximately 1.4 kb in length. A second minor transcript that was detected only in the brain, lung, and ovary was approximately 2.6 kb long (black arrowhead). A third minor RNA species was detected in the spleen sample that corresponds to a transcript size of approximately 1 kb (black arrow). Lane labels: M, RNA size marker; H, heart; B, brain; Li, liver; S, spleen; K, kidney; E, embryonic day 14 embryo; Lu, lung; T, thymus; Te, testis; O, ovary. B: Total RNAs were isolated from a 10-week-old female mouse. Twenty to 50 μg of RNA per lane was blotted onto nylon membrane and hybridized to 32P-labeled random-primed Eaf2 probe. The membrane was stripped and rehybridized with glucose-6-phosphate dehydrogenase (GPDH) to show relative amount of RNA loading. Lane labels: MG, mammary gland; Skn, skin; Mus, skeletal muscle.

Download figure to PowerPoint

Three transcripts with different molecular weights were detected based on Northern blot analysis. A major and the most abundant transcript is approximately 1.4 kb in length. A second minor transcript that was detected only in the brain, lung, and ovary was approximately 2.6 kb long. A third minor RNA species was detected in the spleen sample and corresponds to a transcript size of approximately 1 kb. These minor RNA species are most likely products of splicing variants not due to cross-hybridization with related genes, such as Eaf1, because Eaf1 and Eaf2 shared only 35% similarities at the nucleic acid level and BLASTn search of the mouse genome database and the GenBank nonredundant nucleic acid database did not produce additional DNA sequences with significant homology (data not shown).

DISCUSSION

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. RESULTS
  5. DISCUSSION
  6. EXPERIMENTAL PROCEDURES
  7. Acknowledgements
  8. REFERENCES

We have isolated and characterized murine Eaf2. It showed remarkable amino acid conservation with its human ortholog; 79% amino acids were identical and homology approaches 86% if conserved changes were taken into consideration. By using the BLASTp algorithm, we have also identified the Drosophila prototype of mammalian Eafs in addition to the rat Eaf2 and the mouse Eaf1. Together with previously identified human EAFs, these genes constitute a new gene family. Moreover, by performing sequence alignments between the Drosophila Eaf and mammalian Eafs, we identified three highly conserved protein domains. At least two of these conserved protein domains were shown previously to be essential for binding to ELL or activating transcription, respectively (Simone et al., 2001, 2003), suggesting possible functional conservation. Although no loss-of-function mutation has been reported, dEaf encoded by the DrosophilaCG11166 gene appeared to functionally interact with pannier (pnr), a GATA-type zinc-finger transcriptional factor. Induced overexpression of CG11166 by a promoter-specific insertion resulted in the enhancement of pnr mutant phenotypes (Pena-Rangel et al., 2002).

Of interest, Eaf2 expression appears to be tightly regulated during embryonic development. Its expression is spatially and temporally restricted. Eaf2 transcripts were detected in organs whose development require series of reciprocal tissue–tissue inductions between the epithelium and the underlying mesenchyme. These included the tooth, mammary placodes, vibrissae follicles, submandibular glands, lung, pancreas, and kidney. This preferential spatial distribution of Eaf2 transcripts in branching structures suggests that Eaf2 may be actively involved in their inductive processes.

Furthermore, Eaf2 may play a key role in regulating growth and differentiation of the nervous system as demonstrated by its extensive expression in the embryonic brain, spinal cord, and cranial and spinal ganglia. The expression of Eaf2 in the CNS during early stages of mouse embryogenesis is very similar to the reported expression profile of Ell (Thirman et al., 1997). In the sensory organs, such as olfactory epithelium and the sensory epithelium in the cochlea, high levels of Eaf2 expression were found, suggesting its possible function in facilitating the maturation process of these specialized epithelia. In the developing retina, the appearance of Eaf2 transcripts coincides with the birth of retinal ganglion cells (RGCs) and RNA in situ showed intense hybridization signal in the RGC layer. This finding suggests that Eaf2 may be an active player in regulating the differentiation process of RGCs perhaps by promoting or stabilizing the state of differentiation. Further studies are needed to define its role in controlling neurogenesis.

In the developing lens, Eaf2 transcripts were absent in the proliferating anterior lens epithelial cells but were present aplenty in the terminally differentiated primary lens fiber cells and also in nonproliferating lens fiber cells in the equatorial zone where lens epithelial cells withdraw from the cell cycle and terminally differentiate into secondary lens fiber cells (Menko, 2002). This spatially restricted pattern of Eaf2 expression in the developing lens provides a good indication that Eaf2 may play an important role in regulating the differentiation program of lens fiber cells or their withdraw from the cell cycle. The functional significance of these observations awaits corroborating results from genetic perturbation experiments.

EXPERIMENTAL PROCEDURES

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. RESULTS
  5. DISCUSSION
  6. EXPERIMENTAL PROCEDURES
  7. Acknowledgements
  8. REFERENCES

Isolation of Eaf2 and Plasmid Constructions

Eaf2 was identified as a putative positive-interacting target for Msx1 while performing a yeast two-hybrid screening using a mouse two-hybrid cDNA library prepared from E14.5 embryos (Stratagene, La Jolla, CA). The plasmid that contained Eaf2 cDNA was isolated from yeast cells and used to transform Escherichia coli (XL-Blue). This resulted in the cloning of Eaf2. However, we were not able to demonstrate its interaction with Msx1 by immunoprecipitation.

Nonradioactive In Situ Hybridization

Embryos were fixed in 4% paraformaldehyde overnight. Fixed embryos were then transferred into 30% sucrose and followed by equilibration in 15% sucrose in OCT before embedment in OCT. Cryosections of 20 microns thick were collected onto Histoplus slides (Fisher Scientific). Sense and antisense RNA probes were generated by incorporating digoxigenin–UTP (Roche Biochemicals), according to the manufacturer's recommendation. Before hybridization, sections were treated with 25 μg/ml proteinase K and post-fixed in 0.2% glutaraldehyde and 4% paraformaldehyde. Hybridization was carried out at 65°C with a probe concentration of 1–2 μg/ml in 50% formamide, 5× standard saline citrate (SSC), 0.1% Tween-20, 0.1% CHAPS, 0.2 mg/ml yeast tRNA, 0.005M ethylenediaminetetraacetic acid, 50 μg/ml Haperin, and 1% blocking reagent (Roche Biochemicals). Posthybridization washes were carried out once in 2 × SSC/0.1% CHAPS at 65°C, once with 1 μg/ml RNAse A in 2× SSC at 37°C, once in 2× SSC/0.1% CHAPS at 65°C, and the final wash in 0.2× SSC/0.1% CHAPS at 65°C. Sections were then blocked with 20% heat-inactivated goat serum and incubated overnight with mouse anti-digoxigenin antibody that carries alkaline phosphatase conjugate at 4°C. After extensive washes with phosphate-buffered saline, sections were subjected to colorimetric development in the presence of nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) solution (Roche Biochemicals). Washed sections were then post-fixed in 4% paraformaldehyde, washed, and cover-slide mounted. Images were collected by using a Spot digital camera mounted on an Olympus BX-50 light microscope.

Northern Blot Analysis

A multiple-tissue Northern blot that contained 2 μg of poly(A) RNA from 10 mouse tissues was hybridized and washed according to the manufacturer's recommendations (Ambion, Austin, TX). The mice used for RNA isolation were of mixed sex, 8–10 weeks old. The embryonic RNA was extracted from E14.5 embryos. Additional Northern blot that contained approximately 20–50 μg of total RNA per lane was probed and washed as previously described (Liu et al., 1999). The 32P-labeled probe for hybridization was generated by random-priming using a purified 1-kb Eaf2 cDNA fragment as the template.

Acknowledgements

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. RESULTS
  5. DISCUSSION
  6. EXPERIMENTAL PROCEDURES
  7. Acknowledgements
  8. REFERENCES

We thank Dr. Cheng-Ming Chuong and Dr. Ping Wu for providing help on in situ hybridization. The Eaf2 sequence has been deposited in the GenBank and can be accessed by using GenBank accession no. AY034479.

REFERENCES

  1. Top of page
  2. Abstract
  3. INTRODUCTION
  4. RESULTS
  5. DISCUSSION
  6. EXPERIMENTAL PROCEDURES
  7. Acknowledgements
  8. REFERENCES
  • Brown NL, Patel S, Brzezinski J, Glaser T. 2001. Math5 is required for retinal ganglion cell and optic nerve formation. Development 128: 24972508.
  • Conaway JW, Conaway RC. 1999. Transcription elongation and human disease. Annu Rev Biochem 68: 301319.
  • DiMartino JF, Miller T, Ayton PM, Landewe T, Hess JL, Cleary ML, Shilatifard A. 2000. A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL. Blood 96: 38873893.
  • Eissenberg JC, Ma J, Gerber MA, Christensen A, Kennison JA, Shilatifard A. 2002. dELL is an essential RNA polymerase II elongation factor with a general role in development. Proc Natl Acad Sci U S A 99: 98949899.
  • Emerson BM. 2002. Specificity of gene regulation. Cell 109: 267270.
  • Gall JG. 2000. Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16: 273300.
  • Johnstone RW, Gerber M, Landewe T, Tollefson A, Wold WS, Shilatifard A. 2001. Functional analysis of the leukemia protein ELL: evidence for a role in the regulation of cell growth and survival. Mol Cell Biol 21: 16721681.
  • Kanda Y, Mitani K, Kurokawa M, Yamagata T, Yazaki Y, Hirai H. 1998. Overexpression of the MEN/ELL protein, an RNA polymerase II elongation factor, results in transformation of Rat1 cells with dependence on the Lysine-rich region. J Biol Chem 273: 52485252.
  • Kamura T, Burian D, Khalili H, Schmidt SL, Sato S, Liu WJ, Conrad MN, Conaway RC, Conaway JW, Shilatifard A. 2001. Cloning and characterization of ELL-associated proteins EAP45 and EAP20 a role for yeast EAP-like proteins in regulation of gene expression by glucose. J Biol Chem 276: 1652816533.
  • Liu YH, Tang Z, Kundu RK, Wu L, Luo W, Zhu D, Sangiorgi F, Snead ML, Maxson R. 1999. Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull: a possible mechanism for MSX2-mediated craniosynostosis in humans. Dev Biol 205: 260274.
  • Luo RT, Lavau C, Du C, Simone F, Polak PE, Kawamata S, Thirman MJ. 2001. The elongation domain of ELL is dispensable but its ELL-associated Factor 1 interaction domain is essential for MLL-ELL-induced leukemogenesis. Mol Cell Biol 21: 56785687.
  • Menko AS. 2002. Len epithelial cell differentiation. Exp Eye Res 75: 485490.
  • Miller T, Williams K, Johnstone RW, Shilatifard A. 2000. Identification, cloning, expression, and biochemical characterization of the testis-specific RNA polymerase II elongation factor ELL3. J Biol Chem 275: 3205232056.
  • Mitani K, Kanda Y, Ogawa S, Tanaka T, Inazawa J, Yazaki Y, Hirai H. 1995. Cloning of several species of MLL/MEN chimeric cDNAs in myeloid leukemia with t(11:19)(q23:p13.1) translocation. Blood 85: 20172024.
  • Mitani K, Yamagata T, lida C, Oda H, Maki K, Ichikawa M, Asai T, Honda H, Kurokawa M, Hirai H. 2000. Nonredundant roles of the elongation factor MEN in postimplantation development. Biochem Biophys Res Commun 279: 563567.
  • Pena-Rangel MT, Rodriguez I, Riesgo-Escovar JR. 2002. A misexpression study examining dorsal thorax formation in Drosophila melanogaster. Genetics 160: 10351050.
  • Polak PE, Simone F, Kaberlein JJ, Luo RT, Thirman MJ. 2003. ELL and EAF1 are Cajal body components that are disrupted in MLL-ELL leukemia. Mol Biol Cell 14: 15171528.
  • Schmidt AE, Miller T, Schmidt SL, Shiekhattar R, Shilatifard A. 1999. Cloning and characterization of the EAP30 subunit of the ELL complex that confers derepression of transcription by RNA polymerase II. J Biol Chem 274: 2198121985.
  • Shilatifard A. 1998. Identification and purification of the Holo-ELL complex. Evidence for the presence of ELL-associated proteins that suppress the transcriptional inhibitory activity of ELL. J Biol Chem 273: 1121211217.
  • Shilatifard A, Lane WS, Jackson KW, Conaway RC, Conaway JW. 1996. An RNA polymerase II elongation factor encoded by the human ELL gene. Science 271: 18731876.
  • Shilatifard A, Haque D, Conaway RC, Conaway JW. 1997. Structure and function of RNA polymerase II elongation factor ELL. Identification of two overlapping ELL functional domains that govern its interaction with polymerase and the ternary elongation complex. J Biol Chem 272: 2235522363.
  • Simone F, Polak PE, Kaberlein JJ, Luo RT, Levitan DA, Thirman MJ. 2001. EAF1, a novel ELL-associated factor that is delocalized by expression of the MLL-ELL fusion protein. Blood 98: 201209.
  • Simone F, Luo RT, Polak PE, Kaberlein JJ, Thirman MJ. 2003. ELL-associated factor 2 (EAF2), a functional homolog of EAF1 with alternative ELL binding properties. Blood 101: 23552362.
  • Thirman M, Levitan D, Kobayashi H, Simon M, Rowley J. 1994. Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. Proc Natl Acad Sci U S A 91: 1211012114.
  • Thirman MJ, Diskin EB, Bin SS, Ip HS, Miller JM, Simon MC. 1997. Developmental analysis and subcellular localization of the murine homologue of ELL. Proc Natl Acad Sci U S A 94: 14081413.
  • Young RW. 1985. Cell differentiation in the retina of the mouse. Anat Rec 212: 199205.