SEARCH

SEARCH BY CITATION

Keywords:

  • aneuploidy;
  • trisomy 16;
  • pharyngeal arch artery defects;
  • cardiovascular development

Abstract

To investigate the genetic contribution to phenotypic variability in aneuploidy, we generated mice with trisomy 16 (Ts16) by mating [Rb(6.16)24Lub × Rb(16.17)7Bnr]F1 males with females from four inbred strains, BALB/cJ, C3H/HeJ, C57BL/6J, and DBA/2J. Among the four Ts16 strains that were generated, there were no significant differences in survival, weight, or length relative to euploid control littermates at either embryonic day (E) 14.5 or E17.5. All Ts16 fetuses at E14.5 had edema that ranged from mild to severe, increased amniotic fluid volume, and a thickened neck. At E17.5, Ts16 fetuses exhibited two distinct phenotypes, one with an edematous morphology and the other runt-like. None of these gross morphological abnormalities was strain-specific either in occurrence or frequency. At E10.5, there were pharyngeal arch artery (PAA) anomalies in all Ts16 embryos on the C3H/HeJ background, but none in trisomics on the other three backgrounds. However, at E17.5, there was in addition to ventricular and atrioventricular septal defects, a high frequency of aortic arch defects in Ts16 fetuses, irrespective of genetic background. Taken together, these findings indicate that there are at least two mechanistic responses to the presence of three copies of mouse chromosome 16 in the modeling of the cardiovascular system: one, development of PAA defects, is strongly influenced by genetic background; but the second, development of aortic arch anomalies in the absence of preexisting PAA anomalies, is not. Developmental Dynamics 232:131–139, 2005. © 2004 Wiley-Liss, Inc.