Optimized green fluorescent protein variants provide improved single cell resolution of transgene expression in ascidian embryos



The green fluorescent protein (GFP) is used extensively to monitor gene expression and protein localization in living cells, particularly in developing embryos from a variety of species. Several GFP mutations have been characterized that improve protein expression and alter the emission spectra to produce proteins that emit green, blue, cyan, and yellow wavelengths. DsRed and its variants encode proteins that emit in the orange to red wavelengths. Many of these commercially available fluorescent proteins have been “codon optimized” for maximal levels of expression in mammalian cells. We have generated several fluorescent protein color variants that have been codon optimized for maximal expression in the ascidian Ciona intestinalis. By analyzing quantitative time-lapse recordings of transgenic embryos, we demonstrate that, in general, our Ciona optimized variants are detected and expressed at higher levels than commercially available fluorescent proteins. We show that three of these proteins, expressed simultaneously in different spatial domains within the same transgenic embryo are easily detectable using optimized fluorescent filter sets for epifluorescent microscopy. Coupled with recently developed quantitative imaging techniques, our GFP variants should provide useful reagents for monitoring the simultaneous expression of multiple genes in transgenic ascidian embryos. Developmental Dynamics 235:456–467, 2006. © 2005 Wiley-Liss, Inc.