• Botryllus schlosseri;
  • blastogenesis;
  • DDX3;
  • development;
  • germ line;
  • PL10;
  • stem cells


Proteins of the highly conserved PL-10 (Ded1P) subfamily of DEAD-box family, participate in a wide variety of biological functions. However, the entire spectrum of their functions in both vertebrates and invertebrates is still unknown. Here, we isolated the Botryllus schlosseri (Urochordata) homologue, BS-PL10, revealing its distributions and functions in ontogeny and colony astogeny. In botryllid ascidians, the colony grows by increasing the number of modular units (each called a zooid) through a whole colony synchronized and weekly cyclical astogenic budding process (blastogenesis). At the level of the colony, both BS-PL10 mRNA and its protein (78 kDa) fluctuate in a weekly pattern that corresponds with the animal's blastogenic cycle, increasing from blastogenic stage A to blastogenic stage D. At the organ/module level, a sharp decline is revealed. Primary and secondary developing buds express high levels of BS-PL10 mRNA and protein at all blastogeneic stages. These levels are reduced four to nine times in the new set of functional zooids. This portrait of colony astogeny differed from its ontogeny. Oocytes and sperm cells express high levels of BS-PL10 protein only at early stages of development. Young embryos reveal background levels with increased expressions in some organs at more developed stages. Results reveal that higher levels of BS-PL10 mRNA and protein are characteristic to multipotent soma and germ cells, but patterns deviate between two populations of differentiating stem cells, the stem cells involved in weekly blastogenesis and stem cells involved in embryogenesis. Two types of experimental manipulations, zooidectomy and siRNA assays, have confirmed the importance of BS-PL10 for cell differentiation and organogenesis. BS-PL10 (phylogenetically matching the animal's position in the evolutionary tree), is the only member of this subfamily in B. schlosseri, featuring a wide range of biological activities, some of which represent pivotal roles. The surprising weekly cyclical expression and the participation in cell differentiation posit this molecule as a model system for studying PL10 protein subfamily. Developmental Dynamics 235:1508–1521, 2006. © 2006 Wiley-Liss, Inc.