SEARCH

SEARCH BY CITATION

REFERENCES

  • Akamatsu T, Matsuda Y, Tsumura K, Tada J, Parvin MN, Kanamori N, Hosoi K. 1999. Subtilisin-like proprotein convertase PACE4 (SPC4) is a candidate processing enzyme of bone morphogenetic proteins during tooth formation. Dev Dyn 216: 481488.
  • Akamatsu T, Matsuda Y, Tsumura K, Tada J, Parvin MN, Wei W, Kanamori N, Hosoi K. 2000. Highly regulated expression of subtilisin-like proprotein convertase PACE4 (SPC4) during dentinogenesis. Biochem Biophys Res Commun 272: 410415.
  • Ball EM, Risbridger GP. 2001. Activins as regulators of branching morphogenesis. Dev Biol 238: 112.
  • Barr PJ. 1991. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell 66: 13.
  • Bläuer M, Wichmann L, Punnonen R, Tuohimaa P. 1996. Measurement of activin B in human saliva and localization of activin subunits in rat salivary glands. Biochem Biophys Res Commun 222: 230235.
  • Bresnahan PA, Leduc R, Thomas L, Thorner J, Gibson HL, Brake AJ, Barr PJ, Thomas G. 1990. Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-beta-NGF in vivo. J Cell Biol 111: 28512859.
  • Constam DB, Robertson EJ. 1999. Regulation of bone morphogenetic protein activity by pro domains and proprotein convertases. J Cell Biol 144: 139149.
  • Constam DB, Robertson EJ. 2000a. Tissue-specific requirements for the proprotein convertase furin/SPC1 during embryonic turning and heart looping. Development 127: 245254.
  • Constam DB, Robertson EJ. 2000b. SPC4/PACE4 regulates a TGFβ signaling network during axis formation. Genes Dev 14: 11461155.
  • Constam DB, Calfon M, Robertson EJ. 1996. SPC4, SPC6, and the novel protease SPC7 are coexpressed with bone morphogenetic proteins at distinct sites during embryogenesis. J Cell Biol 134: 181191.
  • Cui Y, Jean F, Thomas G, Christian JL. 1998. BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development. EMBO J 17: 47354743.
  • Denny PC, Ball WD, Redman RS. 1997. Salivary glands: a paradigm for diversity of gland development. Crit Rev Oral Biol Med 8: 5175.
  • Douglass J, Civelli O, Herbert E. 1984. Polyprotein gene expression: generation of diversity of neuroendocrine peptides. Annu Rev Biochem 53: 665715.
  • Dubois CM, Blanchette F, Laprise MH, Leduc R, Grondin F, Seidah NG. 2001. Evidence that furin is an authentic transforming growth factor-beta1-converting enzyme. Am J Pathol 158: 305316.
  • Edwards RH, Selby MJ, Garcia PD, Rutter WJ. 1988. Processing of the native nerve growth factor precursor to form biologically active nerve growth factor. J Biol Chem 263: 68106815.
  • Farhadi H, Pareek S, Day R, Dong W, Chretien M, Bergeron JJ, Seidah NG, Murphy RA. 1997. Prohormone convertases in mouse submandibular gland: co-localization of furin and nerve growth factor. J Histochem Cytochem 45: 795804.
  • Furue M, Zhang Y, Okamoto T, Hata RI, Asashima M. 2001. Activin A induces expression of rat Sel-1l mRNA, a negative regulator of notch signaling, in rat salivary gland-derived epithelial cells. Biochem Biophys Res Commun 282: 745749.
  • Hardman P, Spooner BS. 1993. Extracellular matrix and growth factors in branching morphogenesis. Trans Kans Acad Sci 96: 5661.
  • Hoffman MP, Kidder BL, Steinberg ZL, Lakhani S, Ho S, Kleinman HK, Larsen M. 2002. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms. Development 129: 57675778.
  • Hu MC, Rosenblum ND. 2003. Genetic regulation of branching morphogenesis: lessons learned from loss-of-function phenotypes. Pediatr Res 54: 433438.
  • Jaskoll T, Melnick M. 1999. Submandibular gland morphogenesis: stage-specific expression of TGF-α/EGF, IGF, TGF-β, TNF, and IL-6 signal transduction in normal embryonic mice and the phenotypic effects of TGF-β2, TGF-β3, and EGF-r null mutations. Anat Rec 256: 252268.
  • Jaskoll T, Zhou YM, Chai Y, Makarenkova HP, Collinson JM, West JD, Hajihosseini MK, Lee J, Melnick M. 2002. Embryonic submandibular gland morphogenesis: stage-specific protein localization of FGFs, BMPs, Pax6 and Pax9 in normal mice and abnormal SMG phenotypes in FgfR2-IIIc(+/Delta), BMP7(−/−) and Pax6(−/−) mice. Cells Tissues Organs 170: 8398.
  • Jaskoll T, Witcher D, Toreno L, Bringas P, Moon AM, Melnick M. 2004. FGF8 dose-dependent regulation of embryonic submandibular salivary gland morphogenesis. Dev Biol 268: 457469.
  • Johnson RC, Darlington DN, Hand TA, Bloomquist BT, Mains RE. 1994. PACE4: a subtilisin-like endoprotease prevalent in the anterior pituitary and regulated by thyroid status. Endocrinology 135: 11781185.
  • Kashimata M, Sayeed S, Ka A, Onetti-Muda A, Sakagami H, Faraggiana T, Gresik EW. 2000. The ERK-1/2 signaling pathway is involved in the stimulation of branching morphogenesis of fetal mouse submandibular glands by EGF. Dev Biol 220: 183196.
  • Klein RM. 2002. Development, structure, and function of the salivary glands. In: AveryJK, SteelePF, AveryN, editors. Oral development and histology. 3rd ed. Stuttgart: Thieme. p 292330.
  • Koide S, Yoshida I, Tsuji A, Matsuda Y. 2003. The expression of proprotein convertase PACE4 is highly regulated by Hash-2 in placenta: possible role of placenta-specific basic helix-loop-helix transcription factor, human achaete-scute homologue-2. J Biochem (Tokyo) 134: 433440.
  • Lemercier C, To RQ, Swanson BJ, Lyons GE, Konieczny SF. 1997. Mist1: a novel basic helix-loop-helix transcription factor exhibits a developmentally regulated expression pattern. Dev Biol 182: 101113.
  • Li M, Mbikay M, Nakayama K, Miyata A, Arimura A. 2000. Prohormone convertase PC4 processes the precursor of PACAP in the testis. Ann NY Acad Sci 921: 333339.
  • Mains RE. 2004. Proprotein convertase PACE4. In: BarrettAJ, RawlingsND, WoessnerJE, editors. Handbook of proteolytic enzymes. 2nd ed. San Diego: Elsevier/Academic Press. p 18711874.
  • Mains RE, Berard CA, Denault J-B, Zhou A, Johnson RC, Leduc R. 1997. PACE4: a subtilisin-like endoprotease with unique properties. Biochem J 321: 587593.
  • Melnick M, Jaskoll T. 2000. Mouse submandibular gland morphogenesis: a paradigm for embryonic signal processing. Crit Rev Oral Biol Med 11: 199215.
  • Morita K, Nogawa H. 1999. EGF-dependent lobule formation and FGF7-dependent stalk elongation in branching morphogenesis of mouse salivary epithelium in vitro. Dev Dyn 215: 148154.
  • Nagahama M, Taniguchi T, Hashimoto E, Imamaki A, Mori K, Tsuji A, Matsuda Y. 1998. Biosynthetic processing and quaternary interactions of proprotein convertase SPC4 (PACE4). FEBS Lett 434: 155159.
  • Orr-Urtreger A, Lonai P. 1992. Platelet-derived growth factor-A and its receptor are expressed in separate, but adjacent cell layers of the mouse embryo. Development 115: 10451058.
  • Pin CL, Rukstalis JM, Johnson C, Konieczny SF. 2001. The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J Cell Biol 155: 519530.
  • Ritvos O, Tuuri T, Eramaa M, Sainio K, Hilden K, Saxen L, Gilbert SF. 1995. Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev 50: 229245.
  • Roberts VJ, Barth SL. 1994. Expression of messenger ribonucleic acids encoding the inhibin/activin system during mid- and late-gestation rat embryogenesis. Endocrinology 134: 914923.
  • Rouille Y, Duguay SJ, Lund K, Furuta M, Gong Q, Lipkind G, Oliva AA Jr, Chan SJ, Steiner DF. 1995. Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: the subtilisin-like proprotein convertases. Front Neuroendocrinol 16: 322361.
  • Seidah NG, Chretien M, Day R. 1994. The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie 76: 197209.
  • Seidah NG, Benjannet S, Pareek S, Savaria D, Hamelin J, Goulet B, Laliberte J, Lazure C, Chretien M, Murphy RA. 1996. Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem J 314: 951960.
  • Steinberg Z, Myers C, Heim VM, Lathrop CA, Rebustini IT, Stewart JS, Larsen M, Hoffman MP. 2005. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development 132: 12231234.
  • Steiner DF, Rouille Y, Gong Q, Martin S, Carroll R, Chan SJ. 1996. The role of prohormone convertases in insulin biosynthesis: evidence for inherited defects in their action in man and experimental animals. Diabetes Metab 22: 94104.
  • Tsuji A, Hine C, Tamai Y, Yonemoto K, Mori K, Yoshida S, Bando M, Sakai E, Mori K, Akamatsu T, Matsuda Y. 1997. Genomic organization and alternative splicing of human PACE4 (SPC4), Kexin-like processing endoprotease. J Biochem (Tokyo) 122: 438452.
  • Tsuji A, Yoshida S, Hasegawa S, Bando M, Yoshida I, Koide S, Mori K, Matsuda Y. 1999. Human subtilisin-like proprotein convertase, PACE4 (SPC4) gene expression is highly regulated through E-box elements in HepG2 and GH4C1 cells. J Biochem (Tokyo) 126: 494502.
  • Tsuji A, Sakurai K, Kiyokage E, Yamazaki T, Koide S, Toida K, Ishimura K, Matsuda Y. 2003. Secretory proprotein convertases PACE4 and PC6A are heparin-binding proteins which are localized in the extracellular matrix. Potential role of PACE4 in the activation of proproteins in the extracellular matrix. Biochim Biophys Acta 1645: 95104.
  • Umeda Y, Miyazaki Y, Shiinoki H, Higashiyama S, Nakanishi Y, Hieda Y. 2001. Involvement of heparin-binding EGF-like growth factor and its processing by metalloproteinases in early epithelial morphogenesis of the submandibular gland. Dev Biol 237: 202211.
  • Wang J, Laurie GW. 2004. Organogenesis of the exocrine gland. Dev Biol 273: 122.
  • Werner H, Katz J. 2004. The emerging role of the insulin-like growth factors in oral biology. J Dent Res 83: 832836.
  • Yoshida I, Koide S, Hasegawa SI, Nakagawara A, Tsuji A, Matsuda Y. 2001a. Proprotein convertase PACE4 is down-regulated by the basic helix-loop-helix transcription factor hASH-1 and MASH-1. Biochem J 360(Pt 3): 683689.
  • Yoshida S, Ohbo K, Takakura A, Takebayashi H, Okada T, Abe K, Nabeshima Y. 2001b. Sgn1, a basic helix-loop-helix transcription factor delineates the salivary gland duct cell lineage in mice. Dev Biol 240: 517530.
  • Zhu L, Tran T, Rukstalis JM, Sun P, Damsz B, Konieczny SF. 2004. Inhibition of Mist1 homodimer formation induces pancreatic acinar-to-ductal metaplasia. Mol Cell Biol 24: 26732681.